
Fair Scheduler Guide

Table of contents

1 Purpose...2

2 Introduction..2

3 Installation..3

4 Configuration... 3

4.1 Scheduler Parameters in mapred-site.xml... 4

4.2 Allocation File Format.. 6

4.3 Access Control Lists (ACLs)...8

5 Administration... 8

6 Metrics... 9

Copyright © 2008 The Apache Software Foundation. All rights reserved.

1. Purpose

This document describes the Fair Scheduler, a pluggable MapReduce scheduler for Hadoop
which provides a way to share large clusters.

2. Introduction

Fair scheduling is a method of assigning resources to jobs such that all jobs get, on average,
an equal share of resources over time. When there is a single job running, that job uses the
entire cluster. When other jobs are submitted, tasks slots that free up are assigned to the new
jobs, so that each job gets roughly the same amount of CPU time. Unlike the default Hadoop
scheduler, which forms a queue of jobs, this lets short jobs finish in reasonable time while
not starving long jobs. It is also an easy way to share a cluster between multiple of users. Fair
sharing can also work with job priorities - the priorities are used as weights to determine the
fraction of total compute time that each job gets.

The fair scheduler organizes jobs into pools, and divides resources fairly between these
pools. By default, there is a separate pool for each user, so that each user gets an equal share
of the cluster. It is also possible to set a job's pool based on the user's Unix group or any
jobconf property. Within each pool, jobs can be scheduled using either fair sharing or
first-in-first-out (FIFO) scheduling.

In addition to providing fair sharing, the Fair Scheduler allows assigning guaranteed
minimum shares to pools, which is useful for ensuring that certain users, groups or
production applications always get sufficient resources. When a pool contains jobs, it gets at
least its minimum share, but when the pool does not need its full guaranteed share, the excess
is split between other pools.

If a pool's minimum share is not met for some period of time, the scheduler optionally
supports preemption of jobs in other pools. The pool will be allowed to kill tasks from other
pools to make room to run. Preemption can be used to guarantee that "production" jobs are
not starved while also allowing the Hadoop cluster to also be used for experimental and
research jobs. In addition, a pool can also be allowed to preempt tasks if it is below half of its
fair share for a configurable timeout (generally set larger than the minimum share preemption
timeout). When choosing tasks to kill, the fair scheduler picks the most-recently-launched
tasks from over-allocated jobs, to minimize wasted computation. Preemption does not cause
the preempted jobs to fail, because Hadoop jobs tolerate losing tasks; it only makes them take
longer to finish.

The Fair Scheduler can limit the number of concurrent running jobs per user and per pool.
This can be useful when a user must submit hundreds of jobs at once, or for ensuring that

Fair Scheduler Guide

Page 2
Copyright © 2008 The Apache Software Foundation. All rights reserved.

intermediate data does not fill up disk space on a cluster when too many concurrent jobs are
running. Setting job limits causes jobs submitted beyond the limit to wait until some of the
user/pool's earlier jobs finish. Jobs to run from each user/pool are chosen in order of priority
and then submit time.

Finally, the Fair Scheduler can limit the number of concurrent running tasks per pool. This
can be useful when jobs have a dependency on an external service like a database or web
service that could be overloaded if too many map or reduce tasks are run at once.

3. Installation

To run the fair scheduler in your Hadoop installation, you need to put it on the
CLASSPATH. The easiest way is to copy the hadoop-fairscheduler-*.jar from
HADOOP_HOME/build/contrib/fairscheduler to HADOOP_HOME/lib. Alternatively you
can modify HADOOP_CLASSPATH to include this jar, in
HADOOP_CONF_DIR/hadoop-env.sh

You will also need to set the following property in the Hadoop config file
HADOOP_CONF_DIR/mapred-site.xml to have Hadoop use the fair scheduler:
<property>

<name>mapred.jobtracker.taskScheduler</name>
<value>org.apache.hadoop.mapred.FairScheduler</value>

</property>

Once you restart the cluster, you can check that the fair scheduler is running by going to
http://<jobtracker URL>/scheduler on the JobTracker's web UI. A "job scheduler
administration" page should be visible there. This page is described in the Administration
section.

If you wish to compile the fair scheduler from source, run ant package in your
HADOOP_HOME directory. This will build
build/contrib/fair-scheduler/hadoop-fairscheduler-*.jar.

4. Configuration

The Fair Scheduler contains configuration in two places -- algorithm parameters are set in
mapred-site.xml, while a separate XML file called the allocation file can be used to configure
pools, minimum shares, running job limits and preemption timeouts. The allocation file is
reloaded periodically at runtime, allowing you to change pool settings without restarting your
Hadoop cluster.

For a minimal installation, to just get equal sharing between users, you will not need to set up

Fair Scheduler Guide

Page 3
Copyright © 2008 The Apache Software Foundation. All rights reserved.

an allocation file. If you do set up an allocation file, you will need to tell the scheduler where
to find it by setting the mapred.fairscheduler.allocation.file parameter in mapred-site.xml as
described below.

4.1. Scheduler Parameters in mapred-site.xml

The following parameters can be set in mapred-site.xml to affect the behavior of the fair
scheduler:

Basic Parameters:

Name Description

mapred.fairscheduler.allocation.file Specifies an absolute path to an XML file which
contains minimum shares for each pool,
per-pool and per-user limits on number of
running jobs, and preemption timeouts. If this
property is not set, these features are not used.
The allocation file format is described later.

mapred.fairscheduler.preemption Boolean property for enabling preemption.
Default: false.

mapred.fairscheduler.pool Specify the pool that a job belongs in. If this is
specified then
mapred.fairscheduler.poolnameproperty is
ignored.

mapred.fairscheduler.poolnameproperty Specify which jobconf property is used to
determine the pool that a job belongs in. String,
default: user.name (i.e. one pool for each user).
Another useful value is mapred.job.queue.name
to use MapReduce's "queue" system for access
control lists (see below).
mapred.fairscheduler.poolnameproperty is used
only for jobs in which mapred.fairscheduler.pool
is not explicitly set.

mapred.fairscheduler.allow.undeclared.pools Boolean property for enabling job submission to
pools not declared in the allocation file. Default:
true.

Advanced Parameters:

Name Description

mapred.fairscheduler.sizebasedweight Take into account job sizes in calculating their
weights for fair sharing. By default, weights are

Fair Scheduler Guide

Page 4
Copyright © 2008 The Apache Software Foundation. All rights reserved.

only based on job priorities. Setting this flag to
true will make them based on the size of the job
(number of tasks needed) as well,though not
linearly (the weight will be proportional to the log
of the number of tasks needed). This lets larger
jobs get larger fair shares while still providing
enough of a share to small jobs to let them finish
fast. Boolean value, default: false.

mapred.fairscheduler.preemption.only.log This flag will cause the scheduler to run through
the preemption calculations but simply log when
it wishes to preempt a task, without actually
preempting the task. Boolean property, default:
false. This property can be useful for doing a
"dry run" of preemption before enabling it to
make sure that you have not set timeouts too
aggressively. You will see preemption log
messages in your JobTracker's output log
(HADOOP_LOG_DIR/hadoop-jobtracker-*.log).
The messages look as follows:
Should preempt 2 tasks for
job_20090101337_0001:
tasksDueToMinShare = 2,
tasksDueToFairShare = 0

mapred.fairscheduler.update.interval Interval at which to update fair share
calculations. The default of 500ms works well for
clusters with fewer than 500 nodes, but larger
values reduce load on the JobTracker for larger
clusters. Integer value in milliseconds, default:
500.

mapred.fairscheduler.preemption.interval Interval at which to check for tasks to preempt.
The default of 15s works well for timeouts on the
order of minutes. It is not recommended to set
timeouts much smaller than this amount, but you
can use this value to make preemption
computations run more often if you do set such
timeouts. A value of less than 5s will probably be
too small, however, as it becomes less than the
inter-heartbeat interval. Integer value in
milliseconds, default: 15000.

mapred.fairscheduler.weightadjuster An extension point that lets you specify a class
to adjust the weights of running jobs. This class
should implement the WeightAdjuster interface.
There is currently one example implementation -
NewJobWeightBooster, which increases the

Fair Scheduler Guide

Page 5
Copyright © 2008 The Apache Software Foundation. All rights reserved.

weight of jobs for the first 5 minutes of their
lifetime to let short jobs finish faster. To use it,
set the weightadjuster property to the full class
name,
org.apache.hadoop.mapred.NewJobWeightBooster.
NewJobWeightBooster itself provides two
parameters for setting the duration and boost
factor.
• mapred.newjobweightbooster.factor Factor by

which new jobs weight should be boosted.
Default is 3.

• mapred.newjobweightbooster.duration Boost
duration in milliseconds. Default is 300000 for 5
minutes.

mapred.fairscheduler.loadmanager An extension point that lets you specify a class
that determines how many maps and reduces
can run on a given TaskTracker. This class
should implement the LoadManager interface.
By default the task caps in the Hadoop config
file are used, but this option could be used to
make the load based on available memory and
CPU utilization for example.

mapred.fairscheduler.taskselector An extension point that lets you specify a class
that determines which task from within a job to
launch on a given tracker. This can be used to
change either the locality policy (e.g. keep some
jobs within a particular rack) or the speculative
execution algorithm (select when to launch
speculative tasks). The default implementation
uses Hadoop's default algorithms from
JobInProgress.

4.2. Allocation File Format

The allocation file configures minimum shares, running job limits, weights and preemption
timeouts for each pool. An example is provided in
HADOOP_HOME/conf/fair-scheduler.xml.template. The allocation file can contain the
following types of elements:

• pool elements, which configure each pool. These may contain the following
sub-elements:
• minMaps and minReduces, to set the pool's minimum share of task slots.
• maxMaps and maxReduces, to set the pool's maximum concurrent task slots.
• schedulingMode, the pool's internal scheduling mode, which can be fair for fair

Fair Scheduler Guide

Page 6
Copyright © 2008 The Apache Software Foundation. All rights reserved.

sharing or fifo for first-in-first-out.
• maxRunningJobs, to limit the number of jobs from the pool to run at once (defaults to

infinite).
• weight, to share the cluster non-proportionally with other pools (defaults to 1.0).
• minSharePreemptionTimeout, the number of seconds the pool will wait before killing

other pools' tasks if it is below its minimum share (defaults to infinite).

• user elements, which may contain a maxRunningJobs element to limit jobs. Note that by
default, there is a pool for each user, so per-user limits are not necessary.

• poolMaxJobsDefault, which sets the default running job limit for any pools whose limit is
not specified.

• userMaxJobsDefault, which sets the default running job limit for any users whose limit is
not specified.

• defaultMinSharePreemptionTimeout, which sets the default minimum share preemption
timeout for any pools where it is not specified.

• fairSharePreemptionTimeout, which sets the preemption timeout used when jobs are
below half their fair share.

• defaultPoolSchedulingMode, which sets the default scheduling mode (fair or fifo) for
pools whose mode is not specified.

Pool and user elements only required if you are setting non-default values for the pool/user.
That is, you do not need to declare all users and all pools in your config file before running
the fair scheduler. If a user or pool is not listed in the config file, the default values for limits,
preemption timeouts, etc will be used.

An example allocation file is given below :

<?xml version="1.0"?>
<allocations>

<pool name="sample_pool">
<minMaps>5</minMaps>
<minReduces>5</minReduces>
<maxMaps>25</maxMaps>
<maxReduces>25</maxReduces>
<weight>2.0</weight>

</pool>
<user name="sample_user">

<maxRunningJobs>6</maxRunningJobs>
</user>
<userMaxJobsDefault>3</userMaxJobsDefault>

</allocations>

Fair Scheduler Guide

Page 7
Copyright © 2008 The Apache Software Foundation. All rights reserved.

This example creates a pool sample_pool with a guarantee of 5 map slots and 5 reduce slots.
The pool also has a weight of 2.0, meaning it has a 2x higher share of the cluster than other
pools (the default weight is 1). The pool has a cap of 25 map and 25 reduce slots, which
means that once 25 tasks are running, no more will be scheduled even if the pool's fair share
is higher. Finally, the example limits the number of running jobs per user to 3, except for
sample_user, who can run 6 jobs concurrently. Any pool not defined in the allocation file
will have no guaranteed capacity and a weight of 1.0. Also, any pool or user with no max
running jobs set in the file will be allowed to run an unlimited number of jobs.

A more detailed example file, setting preemption timeouts as well, is available in
HADOOP_HOME/conf/fair-scheduler.xml.template.

4.3. Access Control Lists (ACLs)

The fair scheduler can be used in tandem with the "queue" based access control system in
MapReduce to restrict which pools each user can access. To do this, first enable ACLs and
set up some queues as described in the MapReduce usage guide, then set the fair scheduler to
use one pool per queue by adding the following property in
HADOOP_CONF_DIR/mapred-site.xml:

<property>
<name>mapred.fairscheduler.poolnameproperty</name>
<value>mapred.job.queue.name</value>

</property>

You can then set the minimum share, weight, and internal scheduling mode for each pool as
described earlier. In addition, make sure that users submit jobs to the right queue by setting
the mapred.job.queue.name property in their jobs.

5. Administration

The fair scheduler provides support for administration at runtime through two mechanisms:

1. It is possible to modify minimum shares, limits, weights, preemption timeouts and pool
scheduling modes at runtime by editing the allocation file. The scheduler will reload this
file 10-15 seconds after it sees that it was modified.

2. Current jobs, pools, and fair shares can be examined through the JobTracker's web
interface, at http://<JobTracker URL>/scheduler. On this interface, it is also possible to
modify jobs' priorities or move jobs from one pool to another and see the effects on the
fair shares (this requires JavaScript).

The following fields can be seen for each job on the web interface:

• Submitted - Date and time job was submitted.

Fair Scheduler Guide

Page 8
Copyright © 2008 The Apache Software Foundation. All rights reserved.

mapred_tutorial.html#Job+Authorization

• JobID, User, Name - Job identifiers as on the standard web UI.
• Pool - Current pool of job. Select another value to move job to another pool.
• Priority - Current priority. Select another value to change the job's priority
• Maps/Reduces Finished: Number of tasks finished / total tasks.
• Maps/Reduces Running: Tasks currently running.
• Map/Reduce Fair Share: The average number of task slots that this job should have at

any given time according to fair sharing. The actual number of tasks will go up and down
depending on how much compute time the job has had, but on average it will get its fair
share amount.

In addition, it is possible to view an "advanced" version of the web UI by going to
http://<JobTracker URL>/scheduler?advanced. This view shows two more columns:

• Maps/Reduce Weight: Weight of the job in the fair sharing calculations. This depends on
priority and potentially also on job size and job age if the sizebasedweight and
NewJobWeightBooster are enabled.

6. Metrics

The fair scheduler can export metrics using the Hadoop metrics interface. This can be
enabled by adding an entry to hadoop-metrics.properties to enable the
fairscheduler metrics context. For example, to simply retain the metrics in memory so
they may be viewed in the /metrics servlet:

fairscheduler.class=org.apache.hadoop.metrics.spi.NoEmitMetricsContext

Metrics are generated for each pool and job, and contain the same information that is visible
on the /scheduler web page.

Fair Scheduler Guide

Page 9
Copyright © 2008 The Apache Software Foundation. All rights reserved.

	1 Purpose
	2 Introduction
	3 Installation
	4 Configuration
	4.1 Scheduler Parameters in mapred-site.xml
	4.2 Allocation File Format
	4.3 Access Control Lists (ACLs)

	5 Administration
	6 Metrics

