
Pig Latin Manual

by

Table of contents

1 Conventions... 3

2 Pig Latin Statements.. 4

3 Relations, Bags, Tuples, and Fields... 5

4 Case Sensitivity..8

5 Working with Data...9

6 Increasing Parallelism..9

7 Increasing Performance..9

8 Retrieving Results..9

9 Debugging Pig Latin Scripts..9

10 Data Types..10

11 Nulls... 14

12 Constants.. 18

13 Expressions...20

14 Schemas..21

15 Parameter Substitution... 28

16 Keywords..34

17 Arithmetic Operators..36

18 Comparison Operators..39

19 Null Operators.. 42

20 Boolean Operators..42

21 Dereference Operators..43

22 Sign Operators..47

Copyright © 2007 The Apache Software Foundation. All rights reserved.

23 Cast Operators.. 48

24 Relational Operators...53

25 DESCRIBE...90

26 EXPLAIN...92

27 ILLUSTRATE..94

28 DEFINE..96

29 REGISTER...101

30 Eval Functions..101

31 Load/Store Functions... 113

32 cat... 118

33 cd.. 118

34 copyFromLocal.. 119

35 copyToLocal...120

36 cp.. 121

37 exec...121

38 ls... 123

39 mkdir.. 123

40 mv...124

41 pwd... 125

42 rm... 126

43 rmf.. 126

44 run...127

45 Utility Commands.. 128

Pig Latin Manual

Page 2
Copyright © 2007 The Apache Software Foundation. All rights reserved.

1. Conventions

Conventions for the syntax and code examples included in the Pig Latin Reference Manual
are described here.

Convention Description Example

() Parentheses enclose one or more
items.

Parentheses are also used to
indicate the tuple data type.

Multiple items:

(1, abc, (2,4,6))

[] Straight brackets enclose one or
more optional items.

Straight brackets are also used to
indicate the map data type. In this
case <> is used to indicate optional
items.

Optional items:

[INNER | OUTER]

{ } Curly brackets enclose two or
more items, one of which is
required.

Curly brackets also used to
indicate the bag data type. In this
case <> is used to indicate
required items.

Two items, one required:

{ gen_blk | nested_gen_blk }

… Horizontal ellipsis points indicate
that you can repeat a portion of the
code.

Pig Latin syntax statement:

cat path [path …]

UPPERCASE

lowercase

In general, uppercase type
indicates elements the system
supplies.

In general, lowercase type
indicates elements that you supply.

Note: The names (aliases) of
relations and fields are case
sensitive. The names of Pig Latin
functions are case sensitive. All
other Pig Latin keywords are case

Pig Latin statement:

A = LOAD 'data' AS (f1:int);

1. LOAD, AS supplied BY
system

2. A, f1 are names (aliases)

3. data supplied by you

Pig Latin Manual

Page 3
Copyright © 2007 The Apache Software Foundation. All rights reserved.

insensitive.

italics Italic type indicates placeholders
or variables for which you must
supply values.

Pig Latin syntax:

alias = LIMIT alias n;

You supply the values for
placeholder alias and variable n.

2. Pig Latin Statements

A Pig Latin statement is an operator that takes a relation as input and produces another
relation as output. (This definition applies to all Pig Latin operators except LOAD and
STORE which read data from and write data to the file system.) Pig Latin statements can
span multiple lines and must end with a semi-colon (;). Pig Latin statements are generally
organized in the following manner.

1. A LOAD statement reads data from the file system.

2. A series of "transformation" statements process the data.

3. A STORE statement writes output to the file system; or, a DUMP statement displays
output to the screen.

2.1. Processing Pig Latin Statements

You can execute Pig Latin statements interactively using the Grunt shell or you can place Pig
Latin statements in a script and run the script. Either way, Pig processes Pig Latin statements
as follows:

1. First, Pig validates the syntax and semantics of all statements.

2. Next, if Pig has encountered a DUMP or STORE, Pig will execute all statements
connected to the specified DUMP or STORE.

In this example Pig will validate, but not execute, the LOAD and FOREACH statements.

A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int, gpa:float);

B = FOREACH A GENERATE name;

In this example, Pig will validate the LOAD, FOREACH, and DUMP statements. Then, if
there are no errors, Pig will execute these statements.

A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int, gpa:float);

Pig Latin Manual

Page 4
Copyright © 2007 The Apache Software Foundation. All rights reserved.

B = FOREACH A GENERATE name;

DUMP B;

(John)

(Mary)

(Bill)

(Joe)

2.2. Using Comments in Scripts

If you place Pig Latin statements in a script, the script can include comments.

1. For multi-line comments use /* …. */

2. For single line comments use --

/* myscript.pig

My script includes three simple Pig Latin Statements.

*/

A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int, gpa:float); -- load statement

B = FOREACH A GENERATE name; -- foreach statement

DUMP B; --dump statement

3. Relations, Bags, Tuples, and Fields

As noted, Pig Latin statements work with relations. A relation can be defined as follows:

1. A relation is a bag (more specifically, an outer bag).

2. A bag is a collection of tuples.

3. A tuple is an ordered set of fields.

4. A field is a piece of data.

A Pig relation is a bag of tuples. A Pig relation is similar to a table in a relational database,
where the tuples in the bag correspond to the rows in a table. Unlike a relational table,
however, Pig relations don't require that every tuple contain the same number of fields or that
the fields in the same position (column) have the same type.

Also note that relations are unordered which means there is no guarantee that tuples are

Pig Latin Manual

Page 5
Copyright © 2007 The Apache Software Foundation. All rights reserved.

processed in any particular order. Furthermore, processing may be parallelized in which case
tuples are not processed according to any total ordering.

3.1. Referencing Relations

Relations are referred to by name (or alias). Names are assigned by you as part of the Pig
Latin statement. In this example the name (alias) of the relation is A.

A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int, gpa:float);

DUMP A;

(John,18,4.0F)

(Mary,19,3.8F)

(Bill,20,3.9F)

(Joe,18,3.8F)

3.2. Referencing Fields

Fields are referred to by positional notation or by name (or alias).

1. Positional notation is generated by the system. Positional notation is indicated with the
dollar sign ($) and begins with zero (0); for example, $0, $1, $2.

2. Names are assigned by you using schemas (or, in the case of the GROUP operator and
some functions, by the system). You can use any name that is not a Pig keyword; for
example, f1, f2, f3 or a, b, c or name, age, gpa.

Given relation A above, the three fields are separated out in this table.

First Field Second Field Third Field

Data type chararray int float

Positional notation
(generated by system)

$0 $1 $2

Possible name (assigned
by you using a schema)

name age gpa

Field value (for the first
tuple)

John 18 4.0

Pig Latin Manual

Page 6
Copyright © 2007 The Apache Software Foundation. All rights reserved.

As shown in this example when you assign names to fields you can still refer to the fields
using positional notation. However, for debugging purposes and ease of comprehension, it is
better to use names.

A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int, gpa:float);

X = FOREACH A GENERATE name,$2;

DUMP X;

(John,4.0F)

(Mary,3.8F)

(Bill,3.9F)

(Joe,3.8F)

In this example an error is generated because the requested column ($3) is outside of the
declared schema (positional notation begins with $0). Note that the error is caught before the
statements are executed.

A = LOAD 'data' AS (f1:int,f2:int,f3:int);

B = FOREACH A GENERATE $3;

DUMP B;

2009-01-21 23:03:46,715 [main] ERROR org.apache.pig.tools.grunt.GruntParser - java.io.IOException: Out
of bound access. Trying to access non-existent : 3. Schema {f1: bytearray,f2: bytearray,f3: bytearray} has 3
column(s). etc …

3.3. Referencing Fields that are Complex Data Types

As noted, the fields in a tuple can be any data type, including the complex data types: bags,
tuples, and maps.

1. Use the schemas for complex data types to name fields that are complex data types.

2. Use the dereference operators to reference and work with fields that are complex data
types.

In this example the data file contains tuples. A schema for complex data types (in this case,
tuples) is used to load the data. Then, dereference operators (the dot in t1.t1a and t2.$0) are
used to access the fields in the tuples. Note that when you assign names to fields you can still
refer to these fields using positional notation.

Pig Latin Manual

Page 7
Copyright © 2007 The Apache Software Foundation. All rights reserved.

1.
cat data;

(3,8,9) (4,5,6)

(1,4,7) (3,7,5)

(2,5,8) (9,5,8)

A = LOAD 'data' AS (t1:tuple(t1a:int, t1b:int,t1c:int),t2:tuple(t2a:int,t2b:int,t2c:int));

DUMP A;

((3,8,9),(4,5,6))

((1,4,7),(3,7,5))

((2,5,8),(9,5,8))

X = FOREACH A GENERATE t1.t1a,t2.$0;

DUMP X;

(3,4)

(1,3)

(2,9)

1.
4. Case Sensitivity

The names (aliases) of relations and fields are case sensitive. The names of Pig Latin
functions are case sensitive. The names of parameters (see Parameter Substitution) and all
other Pig Latin keywords are case insensitive.

In the example below, note the following:

1. The names (aliases) of relations A, B, and C are case sensitive.

2. The names (aliases) of fields f1, f2, and f3 are case sensitive.

3. Function names PigStorage and COUNT are case sensitive.

4. Keywords LOAD, USING, AS, GROUP, BY, FOREACH, GENERATE, and DUMP are
case insensitive. They can also be written as load, using, as, group, by, etc.

5. In the FOREACH statement, the field in relation B is referred to by positional notation
($0).

grunt> A = LOAD 'data' USING PigStorage() AS (f1:int, f2:int, f3:int);

Pig Latin Manual

Page 8
Copyright © 2007 The Apache Software Foundation. All rights reserved.

grunt> B = GROUP A BY f1;

grunt> C = FOREACH B GENERATE COUNT ($0);

grunt> DUMP C;

5. Working with Data

Pig Latin allows you to work with data in many ways. In general, and as a starting point:

1. Use the FILTER operator to work with tuples or rows of data. Use the FOREACH
operator to work with columns of data.

2. Use the GROUP operator to group data in a single relation. Use the COGROUP and
JOIN operators to group or join data in two or more relations.

3. Use the UNION operator to merge the contents of two or more relations. Use the SPLIT
operator to partition the contents of a relation into multiple relations.

6. Increasing Parallelism

To increase the parallelism of a job, include the PARALLEL clause with the COGROUP,
CROSS, DISTINCT, GROUP, JOIN and ORDER operators. PARALLEL controls the
number of reducers only; the number of maps is determined by the input data (see the Pig
User Cookbook).

7. Increasing Performance

You can increase or optimize the performance of your Pig Latin scripts by following a few
simple rules (see the Pig User Cookbook).

8. Retrieving Results

Pig Latin includes operators you can use to retrieve the results of your Pig Latin statements:

1. Use the DUMP operator to display results to a screen.

2. Use the STORE operator to write results to a file on the file system.

9. Debugging Pig Latin Scripts

Pig Latin includes operators that can help you debug your Pig Latin statements:

1. Use the DESCRIBE operator to review the schema of a relation.

2. Use the EXPLAIN operator to view the logical, physical, or map reduce execution plans

Pig Latin Manual

Page 9
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://wiki.apache.org/pig/PigUserCookbook
http://wiki.apache.org/pig/PigUserCookbook

to compute a relation.

3. Use the ILLUSTRATE operator to view the step-by-step execution of a series of
statements.

10. Data Types

Simple Data Types Description Example

Scalars

int Signed 32-bit integer 10

long Signed 64-bit integer Data: 10L or 10l

Display: 10L

float 32-bit floating point Data: 10.5F or 10.5f or 10.5e2f
or 10.5E2F

Display: 10.5F or 1050.0F

double 64-bit floating point Data: 10.5 or 10.5e2 or 10.5E2

Display: 10.5 or 1050.0

Arrays

chararray Character array (string) in Unicode
UTF-8 format

hello world

bytearray Byte array (blob)

Complex Data Types

tuple An ordered set of fields. (19,2)

bag An collection of tuples. {(19,2), (18,1)}

map A set of key value pairs. [open#apache]

Pig Latin Manual

Page 10
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Note the following general observations about data types:

1. Use schemas to assign types to fields. If you don't assign types, fields default to type
bytearray and implicit conversions are applied to the data depending on the context in
which that data is used. For example, in relation B, f1 is converted to integer because 5 is
integer. In relation C, f1 and f2 are converted to double because we don't know the type
of either f1 or f2.

A = LOAD 'data' AS (f1,f2,f3);

B = FOREACH A GENERATE f1 + 5;

C = FOREACH A generate f1 + f2;

1. If a schema is defined as part of a load statement, the load function will attempt to
enforce the schema. If the data does not conform to the schema, the loader will generate a
null value or an error.

A = LOAD 'data' AS (name:chararray, age:int, gpa:float);

1. If an explicit cast is not supported, an error will occur. For example, you cannot cast a
chararray to int.

A = LOAD 'data' AS (name:chararray, age:int, gpa:float);

B = FOREACH A GENERATE (int)name;

This will cause an error …

1. If Pig cannot resolve incompatible types through implicit casts, an error will occur. For
example, you cannot add chararray and float (see the Types Table for addition and
subtraction).

A = LOAD 'data' AS (name:chararray, age:int, gpa:float);

B = FOREACH A GENERATE name + gpa;

This will cause an error …

10.1. Tuple

A tuple is an ordered set of fields.

10.1.1. Syntax

Pig Latin Manual

Page 11
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(field [, field …])

10.1.2. Terms

() A tuple is enclosed in parentheses ().

field A piece of data. A field can be any data type
(including tuple and bag).

10.1.3. Usage

You can think of a tuple as a row with one or more fields, where each field can be any data
type and any field may or may not have data. If a field has no data, then the following
happens:

1. In a load statement, the loader will inject null into the tuple. The actual value that is
substituted for null is loader specific; for example, PigStorage substitutes an empty field
for null.

2. In a non-load statement, if a requested field is missing from a tuple, Pig will inject null.

10.1.4. Examples

In this example the tuple contains three fields.

(John,18,4.0F)

10.2. Bag

A bag is a collection of tuples.

10.2.1. Syntax: Inner bag

{ tuple [, tuple …] }

10.2.2. Terms

{ } An inner bag is enclosed in curly brackets { }.

tuple A tuple.

Pig Latin Manual

Page 12
Copyright © 2007 The Apache Software Foundation. All rights reserved.

10.2.3. Usage

Note the following about bags:

1. A bag can have duplicate tuples.

2. A bag can have tuples with differing numbers of fields. However, if Pig tries to access a
field that does not exist, a null value is substituted.

3. A bag can have tuples with fields that have different data types. However, for Pig to
effectively process bags, the schemas of the tuples within those bags should be the same.
For example, if half of the tuples include chararray fields and while the other half include
float fields, only half of the tuples will participate in any kind of computation because the
chararray fields will be converted to null.

Bags have two forms: outer bag (or relation) and inner bag.

10.2.4. Example: Outer Bag

In this example A is a relation or bag of tuples. You can think of this bag as an outer bag.

A = LOAD 'data' as (f1:int, f2:int, f3;int);

DUMP A;

(1,2,3)

(4,2,1)

(8,3,4)

(4,3,3)

10.2.5. Example: Inner Bag

Now, suppose we group relation A by the first field to form relation X.

In this example X is a relation or bag of tuples. The tuples in relation X have two fields. The
first field is type int. The second field is type bag; you can think of this bag as an inner bag.

X = GROUP A BY f1;

DUMP X;

(1,{(1,2,3)})

(4,{(4,2,1),(4,3,3)})

Pig Latin Manual

Page 13
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(8,{(8,3,4)})

10.3. Map

A map is a set of key value pairs.

10.3.1. Syntax (<> denotes optional)

[key#value <, key#value …>]

10.3.2. Terms

[] Maps are enclosed in straight brackets [].

Key value pairs are separated by the pound sign #.

key Must be a scalar data type. Must be a unique value.

value Any data type.

10.3.3. Usage

Key values within a relation must be unique.

10.3.4. Example

In this example the map includes two key value pairs.

[name#John,phone#5551212]

11. Nulls

In Pig Latin, nulls are implemented using the SQL definition of null as unknown or
non-existent. Nulls can occur naturally in data or can be the result of an operation.

11.1. Nulls and Operators

Pig Latin operators interact with nulls as shown in this table.

Operator Interaction

Pig Latin Manual

Page 14
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Comparison operators:

==, !=

>, <

>=, <=

If either sub-expression is null, the result is null.

Comparison operator:

matches

If either the string being matched against or the string
defining the match is null, the result is null.

Arithmetic operators:

+ , -, *, /

% modulo

? bincond

If either sub-expression is null, the resulting
expression is null.

Null operator:

is null

If the tested value is null, returns true; otherwise,
returns false.

Null operator:

is not null

If the tested value is not null, returns true; otherwise,
returns false.

Dereference operators:

tuple (.) or map (#)

If the de-referenced tuple or map is null, returns null.

Cast operator Casting a null from one type to another type results in
a null.

Functions:

AVG, MIN, MAX, SUM

These functions ignore nulls.

Function:

COUNT

This function counts all values, including nulls.

Function:

CONCAT

If either sub-expression is null, the resulting
expression is null.

Pig Latin Manual

Page 15
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Function:

SIZE

If the tested object is null, returns null.

For Boolean sub-expressions, note the results when nulls are used with these operators:

1. FILTER operator – If a filter expression results in null value, the filter does not pass them
through (if X is null, !X is also null, and the filter will reject both).

2. Bincond operator – If a Boolean sub-expression results in null value, the resulting
expression is null (see the interactions above for Arithmetic operators)

11.1.1. Example: COUNT function

As noted, the COUNT function counts all values, including nulls. If you don't want the
function to count null values, you can use one of the methods shown here.

In this example the is not null operator is used to filter (remove) all null values before
subsequent operations, including the COUNT function, are applied.

A = LOAD 'data';

B = FILTER A BY $1 is not null;

C = GROUP A BY $0;

D = FOREACH B GENERATE GROUP, COUNT(B.$1);

Suppose you have written a function, RemoveNulls, to filter null values. In this example
RemoveNulls is used to filter nulls values for the COUNT function only.

A = LOAD 'data';

B = GROUP A BY $0;

D = FOREACH B GENERATE GROUP, COUNT(RemoveNulls($1));

11.2. Nulls and Constants

Nulls can be used as constant expressions in place of expressions of any type.

In this example a and null are projected.

A = LOAD 'data' AS (a, b, c).

B = FOREACH A GENERATE a, null;

Pig Latin Manual

Page 16
Copyright © 2007 The Apache Software Foundation. All rights reserved.

In this example of an outer join, if the join key is missing from a table it is replaced by null.

A = LOAD 'student' AS (name: chararray, age: int, gpa: float);

B = LOAD 'votertab10k' AS (name: chararray, age: int, registration: chararray, donation: float);

C = COGROUP A BY name, B BY name;

D = FOREACH C GENERATE FLATTEN((IsEmpty(A) ? null : A)), FLATTEN((IsEmpty(B) ? null : B));

Like any other expression, null constants can be implicitly or explicitly cast.

In this example both a and null will be implicitly cast to double.

A = LOAD 'data' AS (a, b, c).

B = FOREACH A GENERATE a + null;

In this example both a and null will be cast to int, a implicitly, and null explicitly.

A = LOAD 'data' AS (a, b, c).

B = FOREACH A GENERATE a + (int)null;

11.3. Operations That Produce Nulls

As noted, nulls can be the result of an operation. These operations can produce null values:

1. Division by zero

2. Returns from user defined functions (UDFs)

3. Dereferencing a field that does not exist.

4. Dereferencing a key that does not exist in a map. For example, given a map, info,
containing [name#john, phone#5551212] if a user tries to use info#address a null is
returned.

5. Accessing a field that does not exist in a tuple. As a further explanation, see the examples
below.

11.3.1. Example: Accessing a field that does not exist in a tuple

In this example nulls are injected if fields do not have data.

cat data;

2 3

Pig Latin Manual

Page 17
Copyright © 2007 The Apache Software Foundation. All rights reserved.

4

7 8 9

A = LOAD 'data' AS (f1:int,f2:int,f3:int)

DUMP A;

(,2,3)

(4,,)

(7,8,9)

B = FOREACH A GENERATE f1,f2;

DUMP B;

(,2)

(4,)

(7,8)

11.4. Nulls and Load Functions

As noted, nulls can occur naturally in the data. If nulls are part of the data, it is the
responsibility of the load function to handle them correctly. Keep in mind that what is
considered a null value is loader-specific; however, the load function should always
communicate null values to Pig by producing Java nulls.

The Pig Latin load functions (for example, PigStorage and TextLoader) produce null values
wherever data is missing. For example, empty strings (chararrays) are not loaded; instead,
they are replaced by nulls.

PigStorage is the default load function for the LOAD operator. In this example the is not null
operator is used to filter names with null values.

A = LOAD 'student' AS (name, age, gpa);

B = FILTER A BY name is not null;

12. Constants

Pig provides constant representations for all data types except bytearrays.

Pig Latin Manual

Page 18
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Constant Example Notes

Simple Data Types

Scalars

int 19

long 19L

float 19.2F or 1.92e2f

double 19.2 or 1.92e2

Arrays

chararray 'hello world'

bytearray Not applicable.

Complex Data Types

tuple (19, 2, 1) A constant in this form creates a
tuple.

bag { (19, 2), (1, 2) } A constant in this form creates a
bag.

map ['name' # 'John', 'ext' # 5555] A constant in this form creates a
map.

Please note the following:

1. On UTF-8 systems you can specify string constants consisting of printable ASCII
characters such as 'abc'; you can specify control characters such as '\t'; and, you can
specify a character in Unicode by starting it with '\u', for instance, '\u0001' represents
Ctrl-A in hexadecimal (see Wikipedia ASCII, Unicode, and UTF-8). In theory, you
should be able to specify non-UTF-8 constants on non-UTF-8 systems but as far as we
know this has not been tested.

Pig Latin Manual

Page 19
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-8

2. To specify a long constant, l or L must be appended to the number (for example,
12345678L). If the l or L is not specified, but the number is too large to fit into an int, the
problem will be detected at parse time and the processing is terminated.

3. Any numeric constant with decimal point (for example, 1.5) and/or exponent (for
example, 5e+1) is treated as double unless it ends with f or F in which case it is assigned
type float (for example, 1.5f).

The data type definitions for tuples, bags, and maps apply to constants:

1. A tuple can contain fields of any data type

2. A bag is a collection of tuples

3. A map key must be a scalar; a map value can be any data type

Complex constants can be used in the same places scalar constants can be used, that is, in
FILTER and GENERATE statements.

A = LOAD 'data' USING MyStorage() AS (T: tuple(name:chararray, age: int));

B = FILTER A BY T == ('john', 25);

D = FOREACH B GENERATE T.name, [25#5.6], {(1, 5, 18)};

13. Expressions

In Pig Latin, expressions are language constructs used with the FILTER, FOREACH,
GROUP, and SPLIT operators as well as the eval functions.

Expressions are written in conventional mathematical infix notation and are adapted to the
UTF-8 character set. Depending on the context, expressions can include:

1. Any Pig data type (simple data types, complex data types)

2. Any Pig operator (arithmetic, comparison, null, boolean, dereference, sign, and cast)

3. Any Pig built-in function.

4. Any user-defined function (UDF) written in Java.

In a Pig Latin statement, an arithmetic expression could look like this:

X = GROUP A BY f2*f3;

1.
A string expression could look like this, where a and b are both chararrays:

X = FOREACH A GENERATE CONCAT(a,b);

Pig Latin Manual

Page 20
Copyright © 2007 The Apache Software Foundation. All rights reserved.

1.
A boolean expression could look like this:

X = FILTER A BY (f1==8) OR (NOT (f2+f3 > f1));

14. Schemas

Schemas enable you to assign names to and declare types for fields. Schemas are optional but
we encourage you to use them whenever possible; type declarations result in better
parse-time error checking and more efficient code execution.

Schemas are defined using the AS keyword with the LOAD, STREAM, and FOREACH
operators. If you define a schema using the LOAD operator, then it is the load function that
enforces the schema (see the LOAD operator and the User-Defined Function Manual for
more information).

Note the following:

1. You can define a schema that includes both the field name and field type.

2. You can define a schema that includes the field name only; in this case, the field type
defaults to bytearray.

3. You can choose not to define a schema; in this case, the field is un-named and the field
type defaults to bytearray.

If you assign a name to a field, you can refer to that field using the name or by positional
notation. If you don't assign a name to a field (the field is un-named) you can only refer to
the field using positional notation.

If you assign a type to a field, you can subsequently change the type using the cast operators.
If you don't assign a type to a field, the field defaults to bytearray; you can change the default
type using the cast operators.

14.1. Schemas with LOAD and STREAM Statements

With LOAD and STREAM statements, the schema following the AS keyword must be
enclosed in parentheses.

In this example the LOAD statement includes a schema definition for simple data types.

A = LOAD 'data' AS (f1:int, f2:int);

14.2. Schemas with FOREACH Statements

Pig Latin Manual

Page 21
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://wiki.apache.org/pig/UDFManual

With FOREACH statements, the schema following the AS keyword must be enclosed in
parentheses when the FLATTEN keyword is used. Otherwise, the schema should not be
enclosed in parentheses.

In this example the FOREACH statement includes the FLATTEN keyword and a schema for
simple data types.

X = FOREACH C GENERATE FLATTEN(B) AS (f1:int, f2:int, f3:int);

In this example the FOREACH statement includes a schema for simple data types.

X = FOREACH A GENERATE f1+f2 AS x1:int;

14.3. Schemas for Simple Data Types

Simple data types include int, long, float, double, chararray, and bytearray.

14.3.1. Syntax

(alias[:type]) [, (alias[:type]) …])

14.3.2. Terms

alias The name assigned to the field.

type (Optional) The simple data type assigned to the field.

The alias and type are separated by a colon (:).

If the type is omitted, the field defaults to type
bytearray.

(,) Multiple fields are enclosed in parentheses and
separated by commas.

14.3.3. Examples

In this example the schema defines multiple types.

cat student

John 18 4.0

Pig Latin Manual

Page 22
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Mary 19 3.8

Bill 20 3.9

Joe 18 3.8

A = LOAD 'student' AS (name:chararray, age:int, gpa:float);

DESCRIBE A;

A: {name: chararray,age: int,gpa: float}

DUMP A:

(John,18,4.0F)

(Mary,19,3.8F)

(Bill,20,3.9F)

(Joe,18,3.8F)

In this example field "gpa" will default to bytearray because no type is declared.

cat student

John 18 4.0

Mary 19 3.8

Bill 20 3.9

Joe 18 3.8

A = LOAD 'data' AS (name:chararray, age:int, gpa)

DESCRIBE A;

A: {name: chararray,age: int,gpa: bytearray}

DUMP A;

(John,18,4.0)

(Mary,19,3.8)

(Bill,20,3.9)

(Joe,18,3.8)

Pig Latin Manual

Page 23
Copyright © 2007 The Apache Software Foundation. All rights reserved.

14.4. Schemas for Complex Data Types

Complex data types include tuples, bags, and maps.

14.5. Tuple Schema

A tuple is an ordered set of fields.

14.5.1. Syntax

alias[:tuple] (alias[:type]) [, (alias[:type]) …])

14.5.2. Terms

alias The name assigned to the tuple.

:tuple (Optional) The data type, tuple (case insensitive).

() The designation for a tuple, a set of parentheses.

alias[:type] The constituents of the tuple, where the schema
definition rules for the corresponding type applies to
the constituents of the tuple:

1. alias – the name assigned to the field

2. type (optional) – the simple or complex data type
assigned to the field

14.5.3. Examples

In this example the schema defines one tuple. The load statements are equivalent.

cat data

(3,8,9)

(1,4,7)

(2,5,8)

A = LOAD 'data' AS (T: tuple (f1:int, f2:int, f3:int));

Pig Latin Manual

Page 24
Copyright © 2007 The Apache Software Foundation. All rights reserved.

A = LOAD 'data' AS (T: (f1:int, f2:int, f3:int));

DESCRIBE A;

A: {T: (f1: int,f2: int,f3: int)}

DUMP A;

((3,8,9))

((1,4,7))

((2,5,8))

In this example the schema defines two tuples.

cat data

(3,8,9) (mary,19)

(1,4,7) (john,18)

(2,5,8) (joe,18)

A = LOAD data AS (F:tuple(f1:int,f2:int,f3:int),T:tuple(t1:chararray,t2:int));

DESCRIBE A;

A: {F: (f1: int,f2: int,f3: int),T: (t1: chararray,t2: int)}

DUMP A;

((3,8,9),(mary,19))

((1,4,7),(john,18))

((2,5,8),(joe,18))

14.6. Bag Schema

A bag is a collection of tuples.

14.6.1. Syntax

alias[:bag] {tuple}

Pig Latin Manual

Page 25
Copyright © 2007 The Apache Software Foundation. All rights reserved.

14.6.2. Terms

alias The name assigned to the bag.

:bag (Optional) The data type, bag (case insensitive).

{ } The designation for a bag, a set of curly brackets.

tuple A tuple (see Tuple Schema).

14.6.3. Examples

In this example the schema defines a bag. The two load statements are equivalent.

cat data;

{(3,8,9)}

{(1,4,7)}

{(2,5,8)}

A = LOAD 'data' AS (B: bag {T: tuple(t1:int, t2:int, t3:int)});

A = LOAD 'data' AS (B: {T: (t1:int, t2:int, t3:int)});

DESCRIBE A:

A: {B: {T: (t1: int,t2: int,t3: int)}}

DUMP A;

({(3,8,9)})

({(1,4,7)})

({(2,5,8)})

14.7. Map Schema

A map is a set of key value pairs.

14.7.1. Syntax (where <> means optional)

Pig Latin Manual

Page 26
Copyright © 2007 The Apache Software Foundation. All rights reserved.

alias<:map> []

14.7.2. Terms

alias The name assigned to the map.

:map (Optional) The data type, map (case insensitive).

[] The designation for a map, a set of straight brackets [
].

14.7.3. Example

In this example the schema defines a map. The load statements are equivalent.

cat data

[open#apache]

[apache#hadoop]

A = LOAD 'data' AS (M:map []);

A = LOAD 'data' AS (M:[]);

DESCRIBE A;

a: {M: map[]}

DUMP A;

([open#apache])

([apache#hadoop])

14.8. Schemas for Multiple Types

You can define schemas for data that includes multiple types.

14.8.1. Example

In this example the schema defines a tuple, bag, and map.

Pig Latin Manual

Page 27
Copyright © 2007 The Apache Software Foundation. All rights reserved.

A = LOAD 'mydata' AS (T1:tuple(f1:int, f2:int), B:bag{T2:tuple(t1:float,t2:float)}, M:map[]);

A = LOAD 'mydata' AS (T1:(f1:int, f2:int), B:{T2:(t1:float,t2:float)}, M:[]);

15. Parameter Substitution

15.1. Description

Substitute values for parameters at run time.

15.1.1. Syntax: Specifying parameters using the Pig command line

pig {–param param_name = param_value | –param_file file_name} [-debug | -dryrun] script

15.1.2. Syntax: Specifying parameters using preprocessor statements in a Pig script

{%declare | %default} param_name param_value

15.1.3. Terms

pig Keyword

–param Flag. Use this option when the parameter is included
in the command line.

Multiple parameters can be specified. If the same
parameter is specified multiple times, the last value
will be used and a warning will be generated.

Command line parameters and parameter files can be
combined with command line parameters taking
precedence.

param_name The name of the parameter.

The parameter name has the structure of a standard
language identifier: it must start with a letter or
underscore followed by any number of letters, digits,
and underscores.

Parameter names are case insensitive.

If you pass a parameter to a script that the script does
not use, this parameter is silently ignored. If the script

Pig Latin Manual

Page 28
Copyright © 2007 The Apache Software Foundation. All rights reserved.

has a parameter and no value is supplied or
substituted, an error will result.

param_value The value of the parameter.

A parameter value can take two forms:

1. A sequence of characters enclosed in single or
double quotes. In this case the unquoted version
of the value is used during substitution. Quotes
within the value can be escaped with the
backslash character (\). Single word values that
don't use special characters such as % or = don't
have to be quoted.

2. A command enclosed in back ticks.

The value of a parameter, in either form, can be
expressed in terms of other parameters as long as the
values of the dependent parameters are already
defined.

–param_file Flag. Use this option when the parameter is included
in a file.

Multiple files can be specified. If the same parameter
is present multiple times in the file, the last value will
be used and a warning will be generated. If a
parameter present in multiple files, the value from the
last file will be used and a warning will be generated.

Command line parameters and parameter files can be
combined with command line parameters taking
precedence.

file_name The name of a file containing one or more
parameters.

A parameter file will contain one line per parameter.
Empty lines are allowed. Perl-style (#) comment lines
are also allowed. Comments must take a full line and
must be the first character on the line. Each
parameter line will be of the form: param_name =
param_value. White spaces around = are allowed but
are optional.

–debug Flag. With this option, the script is run and a fully
substituted Pig script produced in the current working
directory named original_script_name.substituted

Pig Latin Manual

Page 29
Copyright © 2007 The Apache Software Foundation. All rights reserved.

–dryrun Flag. With this option, the script is not run and a fully
substituted Pig script produced in the current working
directory named original_script_name.substituted

script A pig script. The pig script must be the last element
in the Pig command line.

1. If parameters are specified in the Pig command
line or in a parameter file, the script should
include a $param_name for each para_name
included in the command line or parameter file.

2. If parameters are specified using the
preprocessor statements, the script should
include either %declare or %default.

3. In the script, parameter names can be escaped
with the backslash character (\) in which case
substitution does not take place.

%declare Preprocessor statement included in a Pig script.

Use to describe one parameter in terms of other
parameters.

The declare statement is processed prior to running
the Pig script.

The scope of a parameter value defined using declare
is all the lines following the declare statement until
the next declare statement that defines the same
parameter is encountered.

%default Preprocessor statement included in a Pig script.

Use to provide a default value for a parameter. The
default value has the lowest priority and is used if a
parameter value has not been defined by other means.

The default statement is processed prior to running
the Pig script.

The scope is the same as for %declare.

15.1.4. Usage

Parameter substitution enables you to write Pig scripts that include parameters and to supply
values for these parameters at run time. For instance, suppose you have a job that needs to

Pig Latin Manual

Page 30
Copyright © 2007 The Apache Software Foundation. All rights reserved.

run every day using the current day's data. You can create a Pig script that includes a
parameter for the date. Then, when you run this script you can specify or supply a value for
the date parameter using one of the supported methods.

15.1.4.1. Specifying Parameters

You can specify parameter names and parameter values as follows:

1. As part of a command line.

2. In parameter file, as part of a command line.

3. With the declare statement, as part of Pig script.

4. With default statement, as part of a Pig script.

15.1.4.2. Precedence

Precedence for parameters is as follows:

1. Highest - parameters defined using the declare statement

2. Next - parameters defined in the command line

3. Lowest - parameters defined in a script

15.1.4.3. Processing Order and Precedence

Parameters are processed as follows:

1. Command line parameters are scanned in the order they are specified on the command
line.

2. Parameter files are scanned in the order they are specified on the command line. Within
each file, the parameters are processed in the order they are listed.

3. Declare and default preprocessors statements are processed in the order they appear in the
Pig script.

15.1.5. Example: Specifying parameters in the command line

Suppose we have a data file called 'mydata' and a pig script called 'myscript.pig'.

1. mydata

1 2 3

4 2 1

8 3 4

Pig Latin Manual

Page 31
Copyright © 2007 The Apache Software Foundation. All rights reserved.

1. myscript.pig

A = LOAD '$data' USING PigStorage() AS (f1:int, f2:int, f3:int);

DUMP A;

In this example the parameter (data) and the parameter value (mydata) are specified in the
command line. If the parameter name in the command line (data) and the parameter name in
the script ($data) do not match, the script will not run. If the value for the parameter (mydata)
is not found, an error is generated.

$ pig –param data=mydata myscript.pig

(1,2,3)

(4,2,1)

(8,3,4)

15.1.6. Example: Specifying parameters using a parameter file

Suppose we have a parameter file called 'myparams.'

my parameters

data1 = mydata1

cmd = `generate_name`

In this example the parameters and values are passed to the script using the parameter file.

$ pig –param_file myparams script2.pig

15.1.7. Example: Specifying parameters using the declare statement

In this example the command is executed and its stdout is used as the parameter value.

%declare CMD `generate_date`

A = LOAD '/data/mydata/$CMD';

B = FILTER A BY $0>'5';

etc …

Pig Latin Manual

Page 32
Copyright © 2007 The Apache Software Foundation. All rights reserved.

15.1.8. Example: Specifying parameters using the default statement

In this example the parameter (DATE) and value ('20090101') are specified in the Pig script
using the default statement. If a value for DATE is not specified elsewhere, the default value
20090101 is used.

%default DATE '20090101';

A = load '/data/mydata/$DATE';

etc …

15.1.9. Examples: Specifying parameter values as a sequence of characters

In this example the characters (in this case, Joe's URL) can be enclosed in single or double
quotes, and quotes within the sequence of characters can be escaped.

%declare DES 'Joe\'s URL';

A = LOAD 'data' AS (name, description, url);

B = FILTER A BY description == '$DES';

etc …

In this example single word values that don't use special characters (in this case, mydata)
don't have to be enclosed in quotes.

$ pig –param data=mydata myscript.pig

15.1.10. Example: Specifying parameter values as a command

In this example the command is enclosed in back ticks. First, the parameters mycmd and date
are substituted when the declare statement is encountered. Then the resulting command is
executed and its stdout is placed in the path before the load statement is run.

%declare CMD `$mycmd $date`

A = LOAD '/data/mydata/$CMD';

B = FILTER A BY $0>'5';

etc …

Pig Latin Manual

Page 33
Copyright © 2007 The Apache Software Foundation. All rights reserved.

16. Keywords

A F M Functions

and f map AVG

all F matches BinaryDeserializer

as filter mkdir BinarySerializer

asc flatten mv BinStorage

float N CONCAT

B foreach not COUNT

bag G null DIFF

by generate O MIN

bytearray group or MAX

C H order PigDump

cache help outer PigStorage

cat I output SIZE

cd if P SUM

chararray illustrate parallel TextLoader

cogroup inner pig TOKENIZE

copyFromLocal input pwd

copyToLocal int Q Symbols

Pig Latin Manual

Page 34
Copyright © 2007 The Apache Software Foundation. All rights reserved.

cp into quit = = != < > <= >=

cross is R + - * / %

D J register ? $. # () [] { }

distinct join rm

define K rmf Preprocessor Statements

desc kill run %declare

describe L S %default

double l set

du L ship

dump limit split

E load stderr

e long stdin

E ls stdout

exec store

explain stream

T

through

tuple

U

Pig Latin Manual

Page 35
Copyright © 2007 The Apache Software Foundation. All rights reserved.

union

using

17. Arithmetic Operators

17.1. Description

Operator Symbol Notes

addition +

subtraction -

multiplication *

division /

modulo % Returns the remainder of a divided
by b (a%b).

bincond ? : condition ? value_if_true :
value_if_false

17.1.1. Examples

Suppose we have relation A.

A = LOAD 'data' AS (f1:int, f2:int, B:bag{T:tuple(t1:int,t2:int)});

DUMP A;

(10,1,{(2,3),(4,6)})

(10,3,{(2,3),(4,6)})

(10,6,{(2,3),(4,6),(5,7)})

17.1.2. In this example the modulo operator is used with fields f1 and f2.

X = FOREACH A GENERATE f1, f2, f1%f2;

Pig Latin Manual

Page 36
Copyright © 2007 The Apache Software Foundation. All rights reserved.

DUMP X;

(10,1,0)

(10,3,1)

(10,6,4)

In this example the bincond operator is used with fields f2 and B. The condition is "f2 equals
1"; if the condition is true, return 1; if the condition is false, return the count of the number of
tuples in B.

X = FOREACH A GENERATE f2, (f2==1?1:COUNT(B));

DUMP X;

(1,1L)

(3,2L)

(6,3L)

17.1.3. Types Table: addition (+) and subtraction (-) operators

* bytearray cast as this data type

bag tuple map int long float double chararray bytearray

bag error error error error error error error error error

tuple not yet error error error error error error error

map error error error error error error error

int int long float double error cast as
int

long long float double error cast as
long

float float double error cast as
float

double double error cast as

Pig Latin Manual

Page 37
Copyright © 2007 The Apache Software Foundation. All rights reserved.

double

chararray error error

bytearray cast as
double

17.1.4. Types Table: multiplication (*) and division (/) operators

* bytearray cast as this data type

bag tuple map int long float double chararray bytearray

bag error error error not yet not yet not yet not yet error error

tuple error error not yet not yet not yet not yet error error

map error error error error error error error

int int long float double error cast as
int

long long float double error cast as
long

float float double error cast as
float

double double error cast as
double

chararray error error

bytearray cast as
double

17.1.5. Types Table: modulo (%) operator

int long bytearray

Pig Latin Manual

Page 38
Copyright © 2007 The Apache Software Foundation. All rights reserved.

int int long cast as int

long long cast as long

bytearray error

18. Comparison Operators

18.1. Description

Operator Symbol Notes

equal ==

not equal !=

less than <

greater than >

less than or equal to <=

greater than or equal to >=

pattern matching matches Regular expression matching. Use
the Java format for regular
expressions.

Use the comparison operators with numeric and string data.

18.1.1. Example: numeric

X = FILTER A BY (f1 == 8);

18.1.2. Example: string

X = FILTER A BY (f2 == 'apache');

Pig Latin Manual

Page 39
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

18.1.3. Example: matches

X = FILTER A BY (f1 matches '.*apache.*');

18.1.4. Types Table: equal (==) and not equal (!=) operators

* bytearray cast as this data type

bag tuple map int long float double chararray bytearray

bag error error error error error error error error error

tuple boolean
(see
Note 1)

error error error error error error error

map boolean

(see
Note 2)

error error error error error error

int boolean boolean boolean boolean error cast as
boolean

long boolean boolean boolean error cast as
boolean

float boolean boolean error cast as
boolean

double boolean error cast as
boolean

chararray boolean cast as
boolean

bytearray boolean

Note 1: boolean (Tuple A is equal to tuple B if they have the same size s, and for all 0 <= i <

Pig Latin Manual

Page 40
Copyright © 2007 The Apache Software Foundation. All rights reserved.

s A[i] = = B[i])

Note 2: boolean (Map A is equal to map B if A and B have the same number of entries, and
for every key k1 in A with a value of v1, there is a key k2 in B with a value of v2, such that
k1 = = k2 and v1 = = v2)

18.1.5.

bag tuple map int long float double chararray bytearray

bag error error error error error error error error error

tuple error error error error error error error error

map error error error error error error error

int boolean boolean boolean boolean error boolean
(bytearray
cast as
int)

long boolean boolean boolean error boolean
(bytearray
cast as
long)

float boolean boolean error boolean
(bytearray
cast as
float)

double boolean error boolean
(bytearray
cast as
double)

chararray boolean boolean
(bytearray
cast as
chararray)

bytearray boolean

Pig Latin Manual

Page 41
Copyright © 2007 The Apache Software Foundation. All rights reserved.

18.1.6. Types Table: matches operator

*Cast as chararray (the second argument must be chararray)

chararray bytearray*

chararray boolean boolean

bytearray boolean boolean

19. Null Operators

19.1. Description

Operator Symbol Notes

is null is null

is not null is not null

19.1.1. Example

X = FILTER A BY f1 is not null;

19.2. Types Table

The null operators can be applied to all data types. For more information, see Nulls.

20. Boolean Operators

20.1. Description

Operator Symbol Notes

AND and

OR or

Pig Latin Manual

Page 42
Copyright © 2007 The Apache Software Foundation. All rights reserved.

NOT not

Pig does not support a boolean data type. However, the result of a boolean expression (an
expression that includes boolean and comparison operators) is always of type boolean (true
or false).

20.1.1. Example

X = FILTER A BY (f1==8) OR (NOT (f2+f3 > f1));

21. Dereference Operators

21.1. Description

Operator Symbol Notes

tuple dereference . (dot) Retrieve a field from a tuple.

bag dereference . (dot) Retrieve a column from a bag.

map dereference # For a key#value pair, look up the
value for the specified key.

Note the following:

1. Tuple dereferencing can be done by name (tuple.field_name) or position (mytuple.$0).
Note that if the dot operator is applied to a bytearray, the bytearray will be assumed to be
a tuple.

2. Bag dereferencing can be done by name (bag.field_name) or position (bag.$0).

3. Map dereferencing must be done by key (field_name#key or $0#key). If the pound
operator is applied to a bytearray, the bytearray is assumed to be a map. If the key does
not exist, the empty string is returned.

21.1.1. Example: Tuple

1. Suppose we have relation A.

LOAD 'data' as (f1:int, f2:tuple(t1:int,t2:int,t3:int));

DUMP A;

Pig Latin Manual

Page 43
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(1,(1,2,3))

(2,(4,5,6))

(3,(7,8,9))

(4,(1,4,7))

(5,(2,5,8))

In this example dereferencing is used to retrieve two fields from tuple f2.

X = FOREACH A GENERATE f2.t1,f2.t3;

DUMP X;

(1,3)

(4,6)

(7,9)

(1,7)

(2,8)

1.
21.1.2. Example: Bag

Suppose we have relation B, formed by grouping relation A (see the GROUP operator for
information about the field names in relation B).

A = LOAD 'data' AS (f1:int, f2:int,f3:int);

DUMP A;

(1,2,3)

(4,2,1)

(8,3,4)

(4,3,3)

(7,2,5)

(8,4,3)

B = GROUP A BY f1;

DUMP B;

Pig Latin Manual

Page 44
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(1,{(1,2,3)})

(4,{(4,2,1),(4,3,3)})

(7,{(7,2,5)})

(8,{(8,3,4),(8,4,3)})

ILLUSTRATE B;

etc …

--

| b | group: int | a: bag({f1: int,f2: int,f3: int}) |

--

| | 8 | {(8, 3, 4), (8, 4, 3)} |

--

In this example dereferencing is used with relation X to project the first field (f1) of each
tuple in the bag (a).

X = FOREACH B GENERATE a.f1;

DUMP X;

({(1)})

({(4),(4)})

({(7)})

({(8),(8)})

21.1.3. Example: Tuple and Bag

1. Suppose we have relation B, formed by grouping relation A (see the GROUP operator
for information about the field names in relation B).

A = LOAD 'data' AS (f1:int, f2:int, f3:int);

DUMP A;

(1,2,3)

(4,2,1)

(8,3,4)

Pig Latin Manual

Page 45
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(4,3,3)

(7,2,5)

(8,4,3)

B = GROUP A BY (f1,f2);

DUMP B;

((1,2),{(1,2,3)})

((4,2),{(4,2,1)})

((4,3),{(4,3,3)})

((7,2),{(7,2,5)})

((8,3),{(8,3,4)})

((8,4),{(8,4,3)})

ILLUSTRATE B;

etc …

| b | group: tuple({f1: int,f2: int}) | a: bag({f1: int,f2: int,f3: int}) |

| | (8, 3) | {(8, 3, 4), (8, 3, 4)} |

In this example dereferencing is used to project a field (f1) from a tuple (group) and a field
(f1) from a bag (a).

X = FOREACH B GENERATE group.f1, a.f1;

DUMP X;

(1,{(1)})

(4,{(4)})

(4,{(4)})

(7,{(7)})

(8,{(8)})

Pig Latin Manual

Page 46
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(8,{(8)})

21.1.4. Example: Map

1. Suppose we have relation A.

A = LOAD 'data' AS (f1:int, f2:map[]);

DUMP A;

(1,[open#apache])

(2,[apache#hadoop])

(3,[hadoop#pig])

(4,[pig#grunt])

1.
In this example dereferencing is used to look up the value of key 'open'.

X = FOREACH A GENERATE f2#'open';

DUMP X;

(apache)

()

()

()

1.
22. Sign Operators

22.1. Description

Operator Symbol Notes

positive + Has no effect.

negative (negation) - Changes the sign of a positive or
negative number.

22.1.1. Example

Pig Latin Manual

Page 47
Copyright © 2007 The Apache Software Foundation. All rights reserved.

A = LOAD 'data' as (x, y, z);

B = FOREACH A GENERATE -x, y;

22.1.2. Types Table: negation (-) operator

bag error

tuple error

map error

int int

long long

float float

double double

chararray error

bytearray double (as double)

23. Cast Operators

23.1. Description

Pig Latin supports casts as shown in this table.

to

from bag tuple map int long float double chararray bytearray

bag error error error error error error error error

tuple error error error error error error error error

map error error error error error error error error

Pig Latin Manual

Page 48
Copyright © 2007 The Apache Software Foundation. All rights reserved.

int error error error yes yes yes yes error

long error error error yes yes yes yes error

float error error error yes yes yes yes error

double error error error yes yes yes yes error

chararray error error error error error error error error

bytearray yes yes yes yes yes yes yes yes

23.1.1. Syntax

{(data_type) | (tuple(data_type)) | (bag{tuple(data_type)}) | (map[]) } field

23.1.2. Terms

(data_type) The data type you want to cast to, enclosed in
parentheses. You can cast to any data type except
bytearray (see the table above).

field The field whose type you want to change.

The field can be represented by positional notation or
by name (alias). For example, if f1 is the first field
and type int, you can cast to type long using (long)$0
or (long)f1.

23.1.3. Usage

Cast operators enable you to cast or convert data from one type to another, as long as
conversion is supported (see the table above). For example, suppose you have an integer
field, myint, which you want to convert to a string. You can cast this field from int to
chararray using (chararray)myint.

Please note the following:

1. A field can be explicitly cast. Once cast, the field remains that type (it is not
automatically cast back). In this example $0 is explicitly cast to int.

Pig Latin Manual

Page 49
Copyright © 2007 The Apache Software Foundation. All rights reserved.

B = FOREACH A GENERATE (int)$0 + 1;

1. Where possible, Pig performs implicit casts. In this example $0 is cast to int (regardless
of underlying data) and $1 is cast to double.

B = FOREACH A GENERATE $0 + 1, $1 + 1.0

1.2. When two bytearrays are used in arithmetic expressions or with built-in aggregate
functions (such as SUM) they are implicitly cast to double. If the underlying data is really
int or long, you’ll get better performance by declaring the type or explicitly casting the
data.

3. Downcasts may cause loss of data. For example casting from long to int may drop bits.

23.1.4. Examples

In this example an int is cast to type chararray (see relation X).

A = LOAD 'data' AS (f1:int,f2:int,f3:int);

DUMP A;

(1,2,3)

(4,2,1)

(8,3,4)

(4,3,3)

(7,2,5)

(8,4,3)

B = GROUP A BY f1;

DUMP B;

(1,{(1,2,3)})

(4,{(4,2,1),(4,3,3)})

(7,{(7,2,5)})

(8,{(8,3,4),(8,4,3)})

DESCRIBE B;

B: {group: int,A: {f1: int,f2: int,f3: int}}

Pig Latin Manual

Page 50
Copyright © 2007 The Apache Software Foundation. All rights reserved.

X = FOREACH B GENERATE group, (chararray)COUNT(A) AS total;

(1,1)

(4,2)

(7,1)

(8,2)

DESCRIBE X;

X: {group: int,total: chararray}

In this example a bytearray (fld in relation A) is cast to type tuple.

cat data;

(1,2,3)

(4,2,1)

(8,3,4)

A = LOAD 'data' AS fld:bytearray;

DESCRIBE A;

a: {fld: bytearray}

DUMP A;

((1,2,3))

((4,2,1))

((8,3,4))

B = FOREACH A GENERATE (tuple(int,int,float))fld;

DESCRIBE B;

b: {(int,int,float)}

DUMP B;

((1,2,3))

((4,2,1))

((8,3,4))

Pig Latin Manual

Page 51
Copyright © 2007 The Apache Software Foundation. All rights reserved.

In this example a bytearray (fld in relation A) is cast to type bag.

cat data

{(4829090493980522200L)}

{(4893298569862837493L)}

{(1297789302897398783L)}

A = LOAD 'data' AS fld:bytearray;

DESCRIBE A;

A: {fld: bytearray}

DUMP A;

({(4829090493980522200L)})

({(4893298569862837493L)})

({(1297789302897398783L)})

B = FOREACH A GENERATE (bag{tuple(long)})fld;

DESCRIBE B;

B: {{(long)}}

DUMP B;

({(4829090493980522200L)})

({(4893298569862837493L)})

({(1297789302897398783L)})

In this example a bytearray (fld in relation A) is cast to type map.

cat data

[open#apache]

[apache#hadoop]

[hadoop#pig]

[pig#grunt]

A = LOAD 'data' AS fld:bytearray;

Pig Latin Manual

Page 52
Copyright © 2007 The Apache Software Foundation. All rights reserved.

DESCRIBE A;

A: {fld: bytearray}

DUMP A;

([open#apache])

([apache#hadoop])

([hadoop#pig])

([pig#grunt])

B = FOREACH A GENERATE ((map[])fld;

DESCRIBE B;

B: {map[]}

DUMP B;

([open#apache])

([apache#hadoop])

([hadoop#pig])

([pig#grunt])

24. Relational Operators

24.1. COGROUP

Groups the data in two or more relations.

24.1.1. Syntax

alias =COGROUP alias BY field_alias [INNER | OUTER] , alias BY field_alias [INNER | OUTER]
[PARALLEL n] ;

24.1.2. Terms

alias The name a relation.

field_alias The name of one or more fields in a relation.

Pig Latin Manual

Page 53
Copyright © 2007 The Apache Software Foundation. All rights reserved.

If multiple fields are specified, separate with commas
and enclose in parentheses. For example, X =
COGROUP A BY (f1, f2);

The number of fields specified in each BY clause
must match. For example, X = COGROUP A BY
(a1,a2,a3), B BY (b1,b2,b3);

BY Keyword.

INNER Keyword.

OUTER Keyword.

PARALLEL n Increase the parallelism of a job by specifying the
number of reduce tasks, n. The optimal number of
parallel tasks depends on the amount of memory on
each node and the memory required by each of the
tasks. To determine n, use the following as a general
guideline:

n = (nr_nodes - 1) * 0.45 * nr_GB

where nr_nodes is the number of nodes used and
nr_GB is the amount of physical memory on each
node.

Note the following:

1. Parallel only affects the number of reduce tasks.
Map parallelism is determined by the input file,
one map for each HDFS block.

2. If you don’t specify parallel, you still get the
same map parallelism but only one reduce task.

24.1.3. Usage

The COGOUP operator groups the data in two or more relations based on the common field
values. Note that the COGROUP and JOIN operators perform similar functions. COGROUP
creates a nested set of output tuples while JOIN creates a flat set of output tuples.

24.1.4. Examples

Suppose we have two relations, A and B.

Pig Latin Manual

Page 54
Copyright © 2007 The Apache Software Foundation. All rights reserved.

A = LOAD 'data1' AS (owner:chararray,pet:chararray);

DUMP A;

(Alice,turtle)

(Alice,goldfish)

(Alice,cat)

(Bob,dog)

(Bob,cat)

B = LOAD 'data2' AS (friend1:chararray,friend2:chararray);

DUMP B;

(Cindy,Alice)

(Mark,Alice)

(Paul,Bob)

(Paul,Jane)

In this example tuples are co-grouped using field “owner” from relation A and field “friend2”
from relation B as the key fields. The DESCRIBE operator shows the schema for relation X,
which has two fields, "group" and "A" (see the GROUP operator for information about the
field names).

X = COGROUP A BY owner, B BY friend2;

DESCRIBE X;

X: {group: chararray,A: {owner: chararray,pet: chararray},b: {firend1: chararray,friend2: chararray}}

Relation X looks like this. A tuple is created for each unique key field. The tuple includes the
key field and two bags. The first bag is the tuples from the first relation with the matching
key field. The second bag is the tuples from the second relation with the matching key field.
If no tuples match the key field, the bag is empty.

(Alice,{(Alice,turtle),(Alice,goldfish),(Alice,cat)},{(Cindy,Alice),(Mark,Alice)})

(Bob,{(Bob,dog),(Bob,cat)},{(Paul,Bob)})

(Jane,{},{(Paul,Jane)})

In this example tuples are co-grouped and the INNER keyword is used to ensure that only

Pig Latin Manual

Page 55
Copyright © 2007 The Apache Software Foundation. All rights reserved.

bags with at least one tuple are returned.

X = COGROUP A BY owner INNER, B BY friend2 INNER;

DUMP X;

(Alice,{(Alice,turtle),(Alice,goldfish),(Alice,cat)},{(Cindy,Alice),(Mark,Alice)})

(Bob,{(Bob,dog),(Bob,cat)},{(Paul,Bob)})

In this example tuples are co-grouped and the INNER keyword is used asymmetrically on
only one of the relations.

X = COGROUP A BY owner, B BY friend2 INNER;

DUMP X;

(Bob,{(Bob,dog),(Bob,cat)},{(Paul,Bob)})

(Jane,{},{(Paul,Jane)})

(Alice,{(Alice,turtle),(Alice,goldfish),(Alice,cat)},{(Cindy,Alice),(Mark,Alice)})

24.2. CROSS

Computes the cross product of two or more relations.

24.2.1. Syntax

alias = CROSS alias, alias [, alias …] [PARALLEL n];

24.2.2. Terms

alias The name of a relation.

PARALLEL n Increase the parallelism of a job by specifying the
number of reduce tasks, n. The optimal number of
parallel tasks depends on the amount of memory on
each node and the memory required by each of the
tasks. To determine n, use the following as a general
guideline:

n = (nr_nodes - 1) * 0.45 * nr_GB

where nr_nodes is the number of nodes used and

Pig Latin Manual

Page 56
Copyright © 2007 The Apache Software Foundation. All rights reserved.

nr_GB is the amount of physical memory on each
node.

Note the following:

1. Parallel only affects the number of reduce tasks.
Map parallelism is determined by the input file,
one map for each HDFS block.

2. If you don’t specify parallel, you still get the
same map parallelism but only one reduce task.

24.2.3. Usage

Use the CROSS operator to compute the cross product (Cartesian product) of two or more
relations.

CROSS is an expensive operation and should be used sparingly.

24.2.4. Example

Suppose we have relations A and B.

A = LOAD 'data1' AS (a1:int,a2:int,a3:int);

DUMP A;

(1,2,3)

(4,2,1)

B = LOAD 'data2' AS (b1:int,b2:int);

DUMP B;

(2,4)

(8,9)

(1,3)

In this example the cross product of relation A and B is computed.

X = CROSS A, B;

DUMP X;

(1,2,3,2,4)

(1,2,3,8,9)

Pig Latin Manual

Page 57
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(1,2,3,1,3)

(4,2,1,2,4)

(4,2,1,8,9)

(4,2,1,1,3)

24.3. DISTINCT

Removes duplicate tuples in a relation.

24.3.1. Syntax

alias = DISTINCT alias [PARALLEL n];

24.3.2. Terms

alias The name of the relation.

PARALLEL n Increase the parallelism of a job by specifying the
number of reduce tasks, n. The optimal number of
parallel tasks depends on the amount of memory on
each node and the memory required by each of the
tasks. To determine n, use the following as a general
guideline:

n = (nr_nodes - 1) * 0.45 * nr_GB

where nr_nodes is the number of nodes used and
nr_GB is the amount of physical memory on each
node.

Note the following:

1. Parallel only affects the number of reduce tasks.
Map parallelism is determined by the input file,
one map for each HDFS block.

2. If you don’t specify parallel, you still get the
same map parallelism but only one reduce task.

24.3.3. Usage

Use the DISTINCT operator to remove duplicate tuples in a relation. DISTINCT does not

Pig Latin Manual

Page 58
Copyright © 2007 The Apache Software Foundation. All rights reserved.

preserve the original order of the contents (to eliminate duplicates, Pig must first sort the
data). You cannot use DISTINCT on a subset of fields. To do this, use FOREACH …
GENERATE to select the fields, and then use DISTINCT.

24.3.4. Example

Suppose we have relation A.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;

(8,3,4)

(1,2,3)

(4,3,3)

(4,3,3)

(1,2,3)

In this example all duplicate tuples are removed.

X = DISTINCT A;

DUMP X;

(1,2,3)

(4,3,3)

(8,3,4)

24.4. DUMP

Displays the contents of a relation.

24.4.1. Syntax

DUMP alias;

24.4.2. Terms

alias The name of a relation.

Pig Latin Manual

Page 59
Copyright © 2007 The Apache Software Foundation. All rights reserved.

24.4.3. Usage

Use the DUMP operator to run (execute) a Pig Latin statement and to display the contents of
an alias. You can use DUMP as a debugging device to make sure the results you are
expecting are being generated.

24.4.4. Example

In this example a dump is performed after each statement.

A = LOAD 'student' AS (name:chararray, age:int, gpa:float);

DUMP A;

(John,18,4.0F)

(Mary,19,3.7F)

(Bill,20,3.9F)

(Joe,22,3.8F)

(Jill,20,4.0F)

B = FILTER A BY name matches 'J.+';

DUMP B;

(John,18,4.0F)

(Joe,22,3.8F)

(Jill,20,4.0F)

24.5. FILTER

Selects tuples from a relation based on some condition.

24.5.1. Syntax

alias = FILTER alias BY expression;

24.5.2. Terms

alias The name of the relation.

Pig Latin Manual

Page 60
Copyright © 2007 The Apache Software Foundation. All rights reserved.

BY Required keyword.

expression An expression.

24.5.3. Usage

Use the FILTER operator to work with tuples or rows of data (if you want to work with
columns of data, use the FOREACH …GENERATE operation).

FILTER is commonly used to select the data that you want; or, conversely, to filter out
(remove) the data you don’t want.

24.5.4. Examples

Suppose we have relation A.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;

(1,2,3)

(4,2,1)

(8,3,4)

(4,3,3)

(7,2,5)

(8,4,3)

In this example the condition states that if the third field equals 3, then include the tuple with
relation X.

X = FILTER A BY f3 == 3;

DUMP X;

(1,2,3)

(4,3,3)

(8,4,3)

In this example the condition states that if the first field equals 8 or if the sum of fields f2 and
f3 is not greater than first field, then include the tuple relation X.

Pig Latin Manual

Page 61
Copyright © 2007 The Apache Software Foundation. All rights reserved.

X = FILTER A BY (f1 == 8) OR (NOT (f2+f3 > f1));

DUMP X;

(4,2,1)

(8,3,4)

(7,2,5)

(8,4,3)

24.6. FOREACH … GENERATE

Generates data transformations based on columns of data.

24.6.1. Syntax

alias = FOREACH { gen_blk | nested_gen_blk } [AS schema];

24.6.2. Terms

alias The name of relation (outer bag).

gen_blk FOREACH … GENERATE used with a relation
(outer bag). Use this syntax:

alias = FOREACH alias GENERATE expression
[expression ….]

nested_gen_blk FOREACH … GENERATE used with a inner bag.
Use this syntax:

alias = FOREACH nested_alias {

alias = nested_op; [alias = nested_op; …]

GENERATE expression [expression ….]

};

Where:

The nested block is enclosed in opening and closing
brackets { … }.

Pig Latin Manual

Page 62
Copyright © 2007 The Apache Software Foundation. All rights reserved.

The GENERATE keyword must be the last statement
within the nested block.

expression An expression.

nested_alias The name of the inner bag.

nested_op Allowed operations are FILTER, ORDER, and
DISTINCT.

The FOREACH … GENERATE operation itself is
not allowed since this could lead to an arbitrary
number of nesting levels.

AS Keyword.

schema A schema using the AS keyword (see Schemas).

1. If the FLATTEN keyword is used, enclose the
schema in parentheses.

2. If the FLATTEN keyword is not used, don't
enclose the schema in parentheses.

24.6.3. Usage

Use the FOREACH …GENERATE operation to work with columns of data (if you want to
work with tuples or rows of data, use the FILTER operation).

FOREACH …GENERATE works with relations (outer bags) as well as inner bags:

1. If A is a relation (outer bag), a FOREACH statement could look like this.

X = FOREACH A GENERATE f1;

1. If A is an inner bag, a FOREACH statement could look like this.

X = FOREACH B {

S = FILTER A BY 'xyz';

GENERATE COUNT (S.$0);

}

Pig Latin Manual

Page 63
Copyright © 2007 The Apache Software Foundation. All rights reserved.

24.6.4. Examples

Suppose we have relations A, B, and C (see the GROUP operator for information about the
field names in relation C).

A = LOAD 'data1' AS (a1:int,a2:int,a3:int);

DUMP A;

(1,2,3)

(4,2,1)

(8,3,4)

(4,3,3)

(7,2,5)

(8,4,3)

B = LOAD 'data2' AS (b1:int,b2:int);

DUMP B;

(2,4)

(8,9)

(1,3)

(2,7)

(2,9)

(4,6)

(4,9)

C = COGROUP A BY a1 inner, B BY b1 inner;

DUMP C;

(1,{(1,2,3)},{(1,3)})

(4,{(4,2,1),(4,3,3)},{(4,6),(4,9)})

(8,{(8,3,4),(8,4,3)},{(8,9)})

ILLUSTRATE C;

Pig Latin Manual

Page 64
Copyright © 2007 The Apache Software Foundation. All rights reserved.

etc …

--

| c | group: int | a: bag({a1: int,a2: int,a3: int}) | B: bag({b1: int,b2: int}) |

--

| | 1 | {(1, 2, 3)} | {(1, 3)} |

--

24.6.5. Example: Projection

In this example the asterisk (*) is used to project all fields from relation A to relation X (this
is similar to SQL Select *). Relation A and X are identical.

X = FOREACH A GENERATE *;

DUMP X;

(1,2,3)

(4,2,1)

(8,3,4)

(4,3,3)

(7,2,5)

(8,4,3)

In this example two fields from relation A are projected to form relation X.

X = FOREACH A GENERATE a1, a2;

DUMP X;

(1,2)

(4,2)

(8,3)

(4,3)

(7,2)

(8,4)

Pig Latin Manual

Page 65
Copyright © 2007 The Apache Software Foundation. All rights reserved.

24.6.6. Example: Nested Projection

In this example if one of the fields in the input relation is a tuple, bag or map, we can perform
a projection on that field (using a deference operator).

X = FOREACH C GENERATE group, B.b2;

DUMP X;

(1,{(3)})

(4,{(6),(9)})

(8,{(9)})

In this example multiple nested columns are retained.

X = FOREACH C GENERATE group, A.(a1, a2);

DUMP X;

(1,{(1,2)})

(4,{(4,2),(4,3)})

(8,{(8,3),(8,4)})

24.6.7. Example: Schema

In this example two fields in relation A are summed to form relation X. A schema is defined
for the projected field.

X = FOREACH A GENERATE a1+a2 AS f1:int;

DESCRIBE X;

x: {f1: int}

DUMP X;

(3)

(6)

(11)

(7)

(9)

Pig Latin Manual

Page 66
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(12)

Y = FILTER X BY f1 > 10;

DUMP Y;

(11)

(12)

24.6.8. Example: Applying Functions

In this example the built-in function SUM() is used to sum a set of numbers in a bag.

X = FOREACH C GENERATE group, SUM (A.a1);

DUMP X;

(1,1)

(4,8)

(8,16)

24.6.9. Example: Flattening

In this example the FLATTEN keyword is used to eliminate nesting.

X = FOREACH C GENERATE group, FLATTEN(A);

DUMP X;

(1,1,2,3)

(4,4,2,1)

(4,4,3,3)

(8,8,3,4)

(8,8,4,3)

Another FLATTEN example.

X = FOREACH C GENERATE GROUP, FLATTEN(A.a3);

DUMP X;

(1,3)

Pig Latin Manual

Page 67
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(4,1)

(4,3)

(8,4)

(8,3)

Another FLATTEN example. Note that for the group '4' in C, there are two tuples in each
bag. Thus, when both bags are flattened, the cross product of these tuples is returned; that is,
tuples (4, 2, 6), (4, 3, 6), (4, 2, 9), and (4, 3, 9).

X = FOREACH C GENERATE FLATTEN(A.(a1, a2)), FLATTEN(B.$1);

DUMP X;

(1,2,3)

(4,2,6)

(4,2,9)

(4,3,6)

(4,3,9)

(8,3,9)

(8,4,9)

24.6.10. Example: Nested Block

Suppose we have relations A and B. Note that relation B contains an inner bag.

A = LOAD 'data' AS (url:chararray,outline:chararray);

DUMP A;

(www.ccc.com,www.hjk.com)

(www.ddd.com,www.xyz.org)

(www.aaa.com,www.cvn.org)

(www.www.com,www.kpt.net)

(www.www.com,www.xyz.org)

(www.ddd.com,www.xyz.org)

B = GROUP A BY url;

Pig Latin Manual

Page 68
Copyright © 2007 The Apache Software Foundation. All rights reserved.

DUMP B;

(www.aaa.com,{(www.aaa.com,www.cvn.org)})

(www.ccc.com,{(www.ccc.com,www.hjk.com)})

(www.ddd.com,{(www.ddd.com,www.xyz.org),(www.ddd.com,www.xyz.org)})

(www.www.com,{(www.www.com,www.kpt.net),(www.www.com,www.xyz.org)})

In this example we perform two of the operations allowed in a nested block, FILTER and
DISTINCT. Note that the last statement in the nested block must be GENERATE.

X = foreach B {

FA= FILTER A BY outlink == 'www.xyz.org';

PA = FA.outlink;

DA = DISTINCT PA;

GENERATE GROUP, COUNT(DA);

}

DUMP X;

(www.ddd.com,1L)

(www.www.com,1L)

24.7. GROUP

Groups the data in a single relation.

24.7.1. Syntax

alias = GROUP alias [BY {[field_alias [, field_alias]] | * | [expression] }] [ALL] [PARALLEL n];

24.7.2. Terms

alias The name of a relation.

BY Keyword. Use this clause to group the relation by
fields or by expression.

field_alias The name of a field in a relation. This is the group

Pig Latin Manual

Page 69
Copyright © 2007 The Apache Software Foundation. All rights reserved.

key or key field.

A relation can be grouped by a single field (f1) or by
the composite value of multiple fields (f1,f2).

* The asterisk. A designator for all fields in the
relation.

expression An expression.

ALL Keyword. Use ALL if you want all tuples to go to a
single group; for example, when doing aggregates
across entire relations.

PARALLEL n Increase the parallelism of a job by specifying the
number of reduce tasks, n. The optimal number of
parallel tasks depends on the amount of memory on
each node and the memory required by each of the
tasks. To determine n, use the following as a general
guideline:

n = (nr_nodes - 1) * 0.45 * nr_GB

where nr_nodes is the number of nodes used and
nr_GB is the amount of physical memory on each
node.

Note the following:

1. Parallel only affects the number of reduce tasks.
Map parallelism is determined by the input file,
one map for each HDFS block.

2. If you don’t specify parallel, you still get the
same map parallelism but only one reduce task.

24.7.3. Usage

The GROUP operator groups together tuples that have the same group key (key field). The
result of a GROUP operation is a relation that includes one tuple per group. This tuple
contains two fields:

1. The first field is named "group" (do not confuse this with the GROUP operator) and is
the same type of the group key.

2. The second field takes the name of the original relation and is type bag.

Pig Latin Manual

Page 70
Copyright © 2007 The Apache Software Foundation. All rights reserved.

The names of both fields are generated by the system as shown in the example below.

24.7.4. Example

1. Suppose we have relation A.

A = load 'student' AS (name:chararray,age:int,gpa:float);

DESCRIBE A;

A: {name: chararray,age: int,gpa: float}

DUMP A;

(John,18,4.0F)

(Mary,19,3.8F)

(Bill,20,3.9F)

(Joe,18,3.8F)

Now, suppose we group relation A on field "age" for form relation B. We can use the
DESCRIBE and ILLUSTRATE operators to examine the structure of relation B. Relation B
has two fields. The first field is named "group" and is type int, the same as field "age" in
relation A. The second field is name "A" after relation A and is type bag.

B = GROUP A BY age;

DESCRIBE B;

B: {group: int, A: {name: chararray,age: int,gpa: float}}

ILLUSTRATE B;

etc …

--

| B | group: int | A: bag({name: chararray,age: int,gpa: float}) |

--

| | 18 | {(John, 18, 4.0), (Joe, 18, 3.8)} |

| | 20 | {(Bill, 20, 3.9)} |

--

Pig Latin Manual

Page 71
Copyright © 2007 The Apache Software Foundation. All rights reserved.

DUMP B;

(18,{(John,18,4.0F),(Joe,18,3.8F)})

(19,{(Mary,19,3.8F)})

(20,{(Bill,20,3.9F)})

1.
Continuing on, as shown in these FOREACH statements, we can refer to the fields in
relation B by names "group" and "A" or by positional notation.

C = FOREACH B GENERATE group, COUNT(A);

DUMP C;

(18,2L)

(19,1L)

(20,1L)

C = FOREACH B GENERATE $0, $1.name;

DUMP C;

(18,{(John),(Joe)})

(19,{(Mary)})

(20,{(Bill)})

24.8. Example

Suppose we have relation A.

A = LOAD 'data' as (f1:chararray, f2:int, f3:int);

DUMP A;

(r1,1,2)

(r2,2,1)

(r3,2,8)

(r4,4,4)

In this example the tuples are grouped using an expression, f2*f3.

Pig Latin Manual

Page 72
Copyright © 2007 The Apache Software Foundation. All rights reserved.

X = GROUP A BY f2*f3;

DUMP X;

(2,{(r1,1,2),(r2,2,1)})

(16,{(r3,2,8),(r4,4,4)})

24.9. JOIN

Joins two or more relations based on common field values.

24.9.1. Syntax

alias = JOIN alias BY field_alias, alias BY field_alias [, alias BY field_alias …] [USING "replicated"]
[PARALLEL n];

24.9.2. Terms

alias The name of a relation.

BY Keyword

field_alias The name of a field in a relation. For the BY clause,
field_alias must be in alias.

Example: X = JOIN A BY fieldA, B BY fieldB, C
BY fieldC;

USING Keyword

"replicated" Use to perform fragment replicate join where one or
more relations are small enough to fit into main
memory.

PARALLEL n Increase the parallelism of a job by specifying the
number of reduce tasks, n. The optimal number of
parallel tasks depends on the amount of memory on
each node and the memory required by each of the
tasks. To determine n, use the following as a general
guideline:

n = (nr_nodes - 1) * 0.45 * nr_GB

Pig Latin Manual

Page 73
Copyright © 2007 The Apache Software Foundation. All rights reserved.

where nr_nodes is the number of nodes used and
nr_GB is the amount of physical memory on each
node.

Note the following:

1. Parallel only affects the number of reduce tasks.
Map parallelism is determined by the input file,
one map for each HDFS block.

2. If you don’t specify parallel, you still get the
same map parallelism but only one reduce task.

24.9.3. Usage

Use the JOIN operator to join two or more relations based on common field values. The
JOIN operator always performs an inner join. Note that the JOIN and COGROUP operators
perform similar functions. JOIN creates a flat set of output records while COGROUP creates
a nested set of output records.

Fragment replicate join is a special type of join that works well if one relation is small
enough to fit into main memory. In such cases, Pig can perform a very efficient join because
all of the hadoop work is done on the map side. In this type of join the large relation is
followed by one or more small relations. The small relations must be small enough to fit into
main memory; if they don't, the process fails and an error is generated.

Note: Fragment replicate joins are experimental; we don't have a strong sense of how small
the small relation must be to fit into memory. In our tests with a simple query that involves
just a JOIN, a relation of up to 100 M can be used if the process overall gets 1 GB of
memory. Please share your observations and experience with us.

24.9.4. Example

Suppose we have relations A and B.

A = LOAD 'data1' AS (a1:int,a2:int,a3:int);

DUMP A;

(1,2,3)

(4,2,1)

(8,3,4)

(4,3,3)

Pig Latin Manual

Page 74
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(7,2,5)

(8,4,3)

B = LOAD 'data2' AS (b1:int,b2:int);

DUMP B;

(2,4)

(8,9)

(1,3)

(2,7)

(2,9)

(4,6)

(4,9)

In this example relations A and B are joined by their first fields.

X = JOIN A BY a1, B BY b1;

DUMP X;

(1,2,3,1,3)

(4,2,1,4,6)

(4,3,3,4,6)

(4,2,1,4,9)

(4,3,3,4,9)

(8,3,4,8,9)

(8,4,3,8,9)

24.9.5. Example: Fragment Replicate Join

In this example, a large relation is joined with two smaller relations. Note that the large
relation comes first followed by the smaller relations; and, all small relations together must
fit into main memory, otherwise an error is generated.

big = LOAD 'big_data' AS (b1,b2,b3);

tiny = LOAD 'tiny_data' AS (t1,t2,t3);

Pig Latin Manual

Page 75
Copyright © 2007 The Apache Software Foundation. All rights reserved.

mini = LOAD 'mini_data' AS (m1,m2,m3);

C = JOIN big BY b1, tiny BY t1, mini BY m1 USING "replicated";

24.10. LIMIT

Limits the number of output tuples.

24.10.1. Syntax

alias = LIMIT alias n;

24.10.2. Terms

alias The name of a relation.

n The number of tuples.

24.10.3. Usage

Use the LIMIT operator to limit the number of output tuples. If the specified number of
output tuples is equal to or exceeds the number of tuples in the relation, the output will
include all tuples in the relation.

There is no guarantee which tuples will be returned, and the tuples that are returned can
change from one run to the next. A particular set of tuples can be requested using the
ORDER operator followed by LIMIT.

Note: The LIMIT operator allows Pig to avoid processing all tuples in a relation. In most
cases a query that uses LIMIT will run more efficiently than an identical query that does not
use LIMIT. It is always a good idea to use limit if you can.

24.10.4. Examples

Suppose we have relation A.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;

(1,2,3)

(4,2,1)

Pig Latin Manual

Page 76
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(8,3,4)

(4,3,3)

(7,2,5)

(8,4,3)

In this example output is limited to 3 tuples. Note that there is no guarantee which three
tuples will be output.

X = LIMIT A 3;

DUMP X;

(1,2,3)

(4,3,3)

(7,2,5)

In this example the ORDER operator is used to order the tuples and the LIMIT operator is
used to output the first three tuples.

B = ORDER A BY f1 DESC, f2 ASC;

DUMP B;

(8,3,4)

(8,4,3)

(7,2,5)

(4,2,1)

(4,3,3)

(1,2,3)

X = LIMIT B 3;

DUMP X;

(8,3,4)

(8,4,3)

(7,2,5)

Pig Latin Manual

Page 77
Copyright © 2007 The Apache Software Foundation. All rights reserved.

24.11. LOAD

Loads data from the file system.

24.11.1. Syntax

LOAD 'data' [USING function] [AS schema];

24.11.2. Terms

'data' The name of the file or directory, in single quotes.

If you specify a directory name, all the files in the
directory are loaded.

You can use hadoop-supported globing to specify
files at the file system or directory levels (see hadoop
glob documentation for details on globing syntax).

USING Keyword.

If the USING clause is omitted, the default load
function PigStorage is used.

function The load function.

1. You can use a built-in function (see the
load/store functions). PigStorage is the default
load function and does not need to be specified
(simply omit the USING clause).

2. You can write your own load function (see the
User-Defined Function Manual) if your data is in
a format that cannot be processed by the built-in
functions.

AS Keyword.

schema A schema using the AS keyword, enclosed in
parentheses (see Schemas).

The loader produces the data of the type specified by
the schema. If the data does not conform to the
schema, depending on the loader, either a null value
or an error is generated.

Pig Latin Manual

Page 78
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://lucene.apache.org/hadoop/api/org/apache/hadoop/fs/FileSystem.html#globPaths(org.apache.hadoop.fs.Path)the
http://lucene.apache.org/hadoop/api/org/apache/hadoop/fs/FileSystem.html#globPaths(org.apache.hadoop.fs.Path)the
http://wiki.apache.org/pig/UDFManual

Note: For performance reasons the loader may not
immediately convert the data to the specified format;
however, you can still operate on the data assuming
the specified type.

24.11.3. Usage

Use the LOAD operator to load data from the file system.

24.11.4. Examples

Suppose we have a data file called myfile.txt. The fields are tab-delimited. The records are
newline-separated.

1 2 3

4 2 1

8 3 4

In this example the default load function, PigStorage, loads data from myfile.txt to form
relation A. The two LOAD statements are equivalent. Note that, because no schema is
specified, the fields are not named and all fields default to type bytearray.

A = LOAD 'myfile.txt';

A = LOAD 'myfile.txt' USING PigStorage('\t');

DUMP A;

(1,2,3)

(4,2,1)

(8,3,4)

In this example a schema is specified using the AS keyword. The two LOAD statements are
equivalent. You can use the DESCRIBE and ILLUSTRATE operators to view the schema.

A = LOAD 'myfile.txt' AS (f1:int, f2:int, f3:int);

A = LOAD 'myfile.txt' USING PigStorage(‘\t’) AS (f1:int, f2:int, f3:int);

DESCRIBE A;

a: {f1: int,f2: int,f3: int}

Pig Latin Manual

Page 79
Copyright © 2007 The Apache Software Foundation. All rights reserved.

ILLUSTRATE A;

| a | f1: bytearray | f2: bytearray | f3: bytearray |

| | 4 | 2 | 1 |

| a | f1: int | f2: int | f3: int |

| | 4 | 2 | 1 |

For examples of how to specify more complex schemas for use with the LOAD operator, see
Schemas for Complex Data Types and Schemas for Multiple Types.

24.12. ORDER

Sorts a relation based on one or more fields.

24.12.1. Syntax

alias = ORDER alias BY { * [ASC|DESC] | field_alias [ASC|DESC] [, field_alias [ASC|DESC] …] }
[PARALLEL n];

24.12.2. Terms

alias The name of a relation.

BY Required keyword.

* Represents all fields in a relation. If relation A has
three fields a1, a2, a3, then these statements are
equivalent:

1. X = ORDER A BY a1,a2,a3;

2. X = ORDER A BY * ;

Pig Latin Manual

Page 80
Copyright © 2007 The Apache Software Foundation. All rights reserved.

ASC Sort in ascending order.

DESC Sort in descending order.

field_alias A field in the relation.

PARALLEL n Increase the parallelism of a job by specifying the
number of reduce tasks, n. The optimal number of
parallel tasks depends on the amount of memory on
each node and the memory required by each of the
tasks. To determine n, use the following as a general
guideline:

n = (nr_nodes - 1) * 0.45 * nr_GB

where nr_nodes is the number of nodes used and
nr_GB is the amount of physical memory on each
node.

Note the following:

1. Parallel only affects the number of reduce tasks.
Map parallelism is determined by the input file,
one map for each HDFS block.

2. If you don’t specify parallel, you still get the
same map parallelism but only one reduce task.

24.12.3. Usage

In Pig, relations are unordered (see Relations, Bags, Tuples, and Fields):

1. If you order relation A to produce relation X (X = ORDER A BY * DESC;) relations A
and X still contain the same thing.

2. If you retrieve the contents of relation X (DUMP X;) they are guaranteed to be in the
order you specified (descending).

3. However, if you further process relation X (Y = FILTER X BY $0 > 1;) there is no
guarantee that the contents will be processed in the order you originally specified
(descending).

24.12.4. Examples

Suppose we have relation A.

Pig Latin Manual

Page 81
Copyright © 2007 The Apache Software Foundation. All rights reserved.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;

(1,2,3)

(4,2,1)

(8,3,4)

(4,3,3)

(7,2,5)

(8,4,3)

In this example relation A is sorted by the third field, f3 in descending order. Note that the
order of the three tuples ending in 3 can vary.

X = ORDER A BY a3 DESC;

DUMP X;

(7,2,5)

(8,3,4)

(1,2,3)

(4,3,3)

(8,4,3)

(4,2,1)

24.13. SPLIT

Partitions a relation into two or more relations.

24.13.1. Syntax

SPLIT alias INTO alias IF expression, alias IF expression [, alias IF expression …];

24.13.2. Terms

alias The name of a relation.

INTO Required keyword.

Pig Latin Manual

Page 82
Copyright © 2007 The Apache Software Foundation. All rights reserved.

IF Required keyword.

expression An expression.

24.13.3. Usage

Use the SPLIT operator to partition the contents of a relation into two or more relations based
on some expression. Depending on the conditions stated in the expression:

1. A tuple may be assigned to more than one relation.

2. A tuple may not be assigned to any relation.

24.13.4. Example

In this example relation A is split into three relations, X, Y, and Z.

A = LOAD 'data' AS (f1:int,f2:int,f3:int);

DUMP A;

(1,2,3)

(4,5,6)

(7,8,9)

SPLIT A INTO X IF f1< 7, Y IF f2==5, Z IF (f3<6 OR f3>6);

DUMP X;

(1,2,3)

(4,5,6)

DUMP Y;

(4,5,6)

DUMP Z;

(1,2,3)

(7,8,9)

Pig Latin Manual

Page 83
Copyright © 2007 The Apache Software Foundation. All rights reserved.

24.14. STORE

Stores data to the file system.

24.14.1. Syntax

STORE alias INTO 'directory' [USING function];

24.14.2. Terms

alias The name of a relation.

INTO Required keyword.

'directory' The name of the storage directory, in quotes. If the
directory already exists, the STORE operation will
fail.

The output data files, named part-nnnnn, are written
to this directory.

USING Keyword. Use this clause to name the store function.

If the USING clause is omitted, the default store
function PigStorage is used.

function The store function.

1. You can use a built-in function (see the
Load/Store Functions). PigStorage is the default
load function and does not need to be specified
(simply omit the USING clause).

2. You can write your own store function (see the
User-Defined Function Manual) if your data is in
a format that cannot be processed by the built-in
functions.

24.14.3. Usage

Use the STORE operator to run (execute) Pig Latin statements and to store data on the file
system.

Pig Latin Manual

Page 84
Copyright © 2007 The Apache Software Foundation. All rights reserved.

24.14.4. Examples

In this example data is stored using PigStorage and the asterisk character (*) as the field
delimiter.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;

(1,2,3)

(4,2,1)

(8,3,4)

(4,3,3)

(7,2,5)

(8,4,3)

STORE A INTO ‘myoutput’ USING PigStorage (‘*’);

CAT myoutput;

1*2*3

4*2*1

8*3*4

4*3*3

7*2*5

8*4*3

In this example, the CONCAT function is used to format the data before it is stored.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;

(1,2,3)

(4,2,1)

(8,3,4)

(4,3,3)

(7,2,5)

Pig Latin Manual

Page 85
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(8,4,3)

B = FOREACH A GENERATE CONCAT('a:',(chararray)f1), CONCAT('b:',(chararray)f2),
CONCAT('c:',(chararray)f3);

DUMP B;

(a:1,b:2,c:3)

(a:4,b:2,c:1)

(a:8,b:3,c:4)

(a:4,b:3,c:3)

(a:7,b:2,c:5)

(a:8,b:4,c:3)

STORE B INTO 'myoutput' using PigStorage(',');

CAT myoutput;

a:1,b:2,c:3

a:4,b:2,c:1

a:8,b:3,c:4

a:4,b:3,c:3

a:7,b:2,c:5

a:8,b:4,c:3

24.15. STREAM

Sends data to an external script or program.

24.15.1. Syntax

alias = STREAM alias [, alias …] THROUGH {`command` | cmd_alias } [AS schema] ;

24.15.2. Terms

alias The name of a relation.

Pig Latin Manual

Page 86
Copyright © 2007 The Apache Software Foundation. All rights reserved.

THROUGH Keyword.

`command` A command, including the arguments, enclosed in
back tics (where a command is anything that can be
executed).

cmd_alias The name of a command created using the DEFINE
operator.

AS Keyword.

schema A schema using the AS keyword, enclosed in
parentheses (see Schemas).

24.15.3. Usage

Use the STREAM operator to send data through an external script or program. Multiple
stream operators can appear in the same Pig script. The stream operators can be adjacent to
each other or have other operations in between.

When used with a command, a stream statement could look like this:

A = LOAD 'data';

B = STREAM A THROUGH `stream.pl -n 5`;

When used with a cmd_alias, a stream statement could look like this, where cmd is the
defined alias.

A = LOAD 'data';

DEFINE cmd `stream.pl –n 5`;

B = STREAM A THROUGH cmd;

24.15.4. About Data Guarantees

Data guarantees are determined based on the position of the streaming operator in the Pig
script.

1. Unordered data – No guarantee for the order in which the data is delivered to the
streaming application.

2. Grouped data – The data for the same grouped key is guaranteed to be provided to the

Pig Latin Manual

Page 87
Copyright © 2007 The Apache Software Foundation. All rights reserved.

streaming application contiguously

3. Grouped and ordered data – The data for the same grouped key is guaranteed to be
provided to the streaming application contiguously. Additionally, the data within the
group is guaranteed to be sorted by the provided secondary key.

In addition to position, data grouping and ordering can be determined by the data itself.
However, you need to know the property of the data to be able to take advantage of its
structure.

24.15.5. Example: Data Guarantees

In this example the data is unordered.

A = LOAD 'data';

B = STREAM A THROUGH `stream.pl`;

In this example the data is grouped.

A = LOAD 'data';

B = GROUP A BY $1;

C = FOREACH B FLATTEN(A);

D = STREAM C THROUGH `stream.pl`

In this example the data is grouped and ordered.

A = LOAD 'data';

B = GROUP A BY $1;

C = FOREACH B {

D = ORDER A BY ($3, $4);

GENERATE D;

}

E = STREAM C THROUGH `stream.pl`;

24.15.6. Example: Schemas

In this example a schema is specified as part of the STREAM statement.

Pig Latin Manual

Page 88
Copyright © 2007 The Apache Software Foundation. All rights reserved.

X = STREAM A THROUGH `stream.pl` as (f1:int, f2;int, f3:int);

24.15.7. Additional Examples

See the UDF statement DEFINE for additional examples.

24.16. UNION

Computes the union of two or more relations.

24.16.1. Syntax

alias = UNION alias, alias [, alias …];

24.16.2. Terms

alias The name of a relation.

24.16.3. Usage

Use the UNION operator to merge the contents of two or more relations. The UNION
operator:

1. Does not preserve the order of tuples. Both the input and output relations are interpreted
as unordered bags of tuples.

2. Does not ensure (as databases do) that all tuples adhere to the same schema or that they
have the same number of fields. In a typical scenario, however, this should be the case;
therefore, it is the user's responsibility to either (1) ensure that the tuples in the input
relations have the same schema or (2) be able to process varying tuples in the output
relation.

3. Does not eliminate duplicate tuples.

24.16.4. Example

In this example the union of relation A and B is computed.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;

(1,2,3)

Pig Latin Manual

Page 89
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(4,2,1)

B = LOAD 'data' AS (b1:int,b2:int);

DUMP A;

(2,4)

(8,9)

(1,3)

X = UNION A, B;

DUMP X;

(1,2,3)

(4,2,1)

(2,4)

(8,9)

(1,3)

25. DESCRIBE

Returns the schema of an alias.

25.1. Syntax

DESCRIBE alias;

25.2. Terms

alias The name of a relation.

25.3. Usage

Use the DESCRIBE operator to review the schema of a particular alias.

25.4. Example

Pig Latin Manual

Page 90
Copyright © 2007 The Apache Software Foundation. All rights reserved.

In this example a schema is specified using the AS clause. If all data conforms to the schema,
Pig will use the assigned types.

A = LOAD 'student' AS (name:chararray, age:int, gpa:float);

B = FILTER A BY name matches 'J.+';

C = GROUP B BY name;

D = FOREACH B GENERATE COUNT(B.age);

DESCRIBE A;

A: {group, B: (name: chararray,age: int,gpa: float}

DESCRIBE B;

B: {group, B: (name: chararray,age: int,gpa: float}

DESCRIBE C;

C: {group, chararry,B: (name: chararray,age: int,gpa: float}

DESCRIBE D;

D: {long}

In this example no schema is specified. All fields default to type bytearray or long (see Data
Types).

a = LOAD 'student';

b = FILTER a BY $0 matches 'J.+';

c = GROUP b BY $0;

d = FOREACH c GENERATE COUNT(b.$1);

DESCRIBE a;

Schema for a unknown.

DESCRIBE b;

2008-12-05 01:17:15,316 [main] WARN org.apache.pig.PigServer - bytearray is implicitly cast to chararray
under LORegexp Operator

Schema for b unknown.

DESCRIBE c;

Pig Latin Manual

Page 91
Copyright © 2007 The Apache Software Foundation. All rights reserved.

2008-12-05 01:17:23,343 [main] WARN org.apache.pig.PigServer - bytearray is implicitly caste to chararray
under LORegexp Operator

c: {group: bytearray,b: {null}}

DESCRIBE d;

2008-12-05 03:04:30,076 [main] WARN org.apache.pig.PigServer - bytearray is implicitly caste to chararray
under LORegexp Operator

d: {long}

26. EXPLAIN

Displays execution plans.

26.1. Syntax

EXPLAIN alias;

26.2. Terms

alias The name of a relation.

26.3. Usage

Use the EXPLAIN operator to review the logical, physical, and map reduce execution plans
that are used to compute the specified relationship.

1. The logical plan shows a pipeline of operators to be executed to build the relation. Type
checking and backend-independent optimizations (such as applying filters early on) also
apply.

2. The physical plan shows how the logical operators are translated to backend-specific
physical operators. Some backend optimizations also apply.

3. The map reduce plan shows how the physical operators are grouped into map reduce
jobs.

26.4. Example

In this example the EXPLAIN operator produces all three plans. (Note that only a portion of
the output is shown in this example.)

Pig Latin Manual

Page 92
Copyright © 2007 The Apache Software Foundation. All rights reserved.

A = LOAD 'student' AS (name:chararray, age:int, gpa:float);

B = GROUP A BY name;

C = FOREACH B GENERATE COUNT(A.age);

EXPLAIN C;

Logical Plan:

Store xxx-Fri Dec 05 19:42:29 UTC 2008-23 Schema: {long} Type: Unknown

|

|---ForEach xxx-Fri Dec 05 19:42:29 UTC 2008-15 Schema: {long} Type: bag

etc …

Physical Plan:

Store(fakefile:org.apache.pig.builtin.PigStorage) - xxx-Fri Dec 05 19:42:29 UTC 2008-40

|

|---New For Each(false)[bag] - xxx-Fri Dec 05 19:42:29 UTC 2008-39

| |

| POUserFunc(org.apache.pig.builtin.COUNT)[long] - xxx-Fri Dec 05

etc …

--

| Map Reduce Plan |

--

MapReduce node xxx-Fri Dec 05 19:42:29 UTC 2008-41

Map Plan

Local Rearrange[tuple]{chararray}(false) - xxx-Fri Dec 05 19:42:29 UTC 2008-34

| |

| Project[chararray][0] - xxx-Fri Dec 05 19:42:29 UTC 2008-35

etc …

Pig Latin Manual

Page 93
Copyright © 2007 The Apache Software Foundation. All rights reserved.

27. ILLUSTRATE

Displays a step-by-step execution of a sequence of statements.

27.1. Syntax

ILLUSTRATE alias;

27.2. Terms

alias The name of a relation.

27.3. Usage

Use the ILLUSTRATE operator to review how data is transformed through a sequence of Pig
Latin statements:

1. The data load statement must include a schema.

2. The Pig Latin statement used to form the relation that is used with the ILLUSTRATE
command cannot include the map data type, the LIMIT and SPLIT operators, or nested
FOREACH statements.

ILLUSTRATE accesses the ExampleGenerator algorithm which can select an appropriate
and concise set of example data automatically. It does a better job than random sampling
would do; for example, random sampling suffers from the drawback that selective operations
such as filters or joins can eliminate all the sampled data, giving you empty results which
will not help with debugging.

With the ILLUSTRATE operator you can test your programs on small datasets and get faster
turnaround times. The ExampleGenerator algorithm uses Pig's Local mode (rather than
Hadoop mode) which means that illustrative example data is generated in near real-time.

Relation X can be used with the ILLUSTRATE operator.

X = FOREACH A GENERATE f1;

ILLUSTRATE X;

Relation Y cannot be used with the ILLUSTRATE operator.

Y = LIMIT A 3;

Pig Latin Manual

Page 94
Copyright © 2007 The Apache Software Foundation. All rights reserved.

ILLUSTRATE Y;

27.4. Example

In this example we count the number of sites a user has visited since 12/1/08. The
ILLUSTRATE statement will show how the results for num_user_visits are derived.

visits = LOAD 'visits' AS (user:chararray, ulr:chararray, timestamp:chararray);

DUMP visits;

(Amy,cnn.com,20080218)

(Fred,harvard.edu,20081204)

(Amy,bbc.com,20081205)

(Fred,stanford.edu,20081206)

recent_visits = FILTER visits BY timestamp >= '20081201';

user_visits = GROUP recent_visits BY user;

num_user_visits = FOREACH user_visits GENERATE COUNT(recent_visits);

DUMP num_user_visits;

(1L)

(2L)

ILLUSTRATE num_user_visits;

--

| visits | user: bytearray | ulr: bytearray | timestamp: bytearray |

--

| | Amy | cnn.com | 20080218 |

| | Fred | harvard.edu | 20081204 |

| | Amy | bbc.com | 20081205 |

| | Fred | stanford.edu | 20081206 |

--

--

Pig Latin Manual

Page 95
Copyright © 2007 The Apache Software Foundation. All rights reserved.

| visits | user: chararray | ulr: chararray | timestamp: chararray |

--

| | Amy | cnn.com | 20080218 |

| | Fred | harvard.edu | 20081204 |

| | Amy | bbc.com | 20081205 |

| | Fred | stanford.edu | 20081206 |

--

| recent_visits | user: chararray | ulr: chararray | timestamp: chararray |

| | Fred | harvard.edu | 20081204 |

| | Amy | bbc.com | 20081205 |

| | Fred | stanford.edu | 20081206 |

--

| user_visits | group: chararray | recent_visits: bag({user: chararray,ulr: chararray,timestamp: chararray}) |

--

| | Amy | {(Amy, bbc.com, 20081205)} |

| | Fred | {(Fred, harvard.edu, 20081204), (Fred, stanford.edu, 20081206)} |

--

| num_user_visits | long |

| | 1 |

| | 2 |

28. DEFINE

Pig Latin Manual

Page 96
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Assigns an alias to a function or command.

28.1. Syntax

DEFINE alias {function | [`command` [input] [output] [ship] [cache]] };

28.2. Terms

alias The name for the function or command.

function The name of a function.

`command ` A command, including the arguments, enclosed in
back tics (where a command is anything that can be
executed).

input INPUT ({stdin | 'path'} [USING serializer] [, {stdin |
'path'} [USING serializer] …])

Where:

1. INPUT – Keyword.

2. 'path' – A file path, enclosed in single quotes.

3. USING – Keyword.

4. serializer – A function that converts data from
tuples to stream format. PigStorage is the default
serializer. You can also write your own UDF.

output OUTPUT ({stdout | stderr | 'path'} [USING
deserializer] [, {stdout | stderr | 'path'} [USING
deserializer] …])

Where:

1. OUTPUT – Keyword.

2. 'path' – A file path, enclosed in single quotes.

3. USING – Keyword.

4. deserializer – A function that converts data from
stream format to tuples. PigStorage is the default
deserializer. You can also write your own UDF.

ship SHIP('path' [, 'path' …])

Pig Latin Manual

Page 97
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Where:

1. SHIP – Keyword.

2. 'path' – A file path, enclosed in single quotes.

cache CACHE('dfs_path#dfs_file' [, 'dfs_path#dfs_file' …])

Where:

1. CACHE – Keyword.

2. 'dfs_path#dfs_file' – A file path/file name on the
distributed file system, enclosed in single quotes.
Example: '/mydir/mydata.txt#mydata.txt'

28.3. Usage

Use the DEFINE statement to assign a name (alias) to a function or to a command.

Use DEFINE to specify a function when:

1. The function has a log package name that you don't want to include in a script, especially
if you call the function several times in that script.

2. The constructor for the function takes string parameters. If you need to use different
constructor parameters for different calls to the function you will need to create multiple
defines – one for each parameter set.

Use DEFINE to specify a command when the streaming command specification is complex
or requires additional parameters (input, output, and so on).

28.3.1. About Input and Output

Serialization is needed to convert data from tuples to a format that can be processed by the
streaming application. Deserialization is needed to convert the output from the streaming
application back into tuples.

PigStorage, the default serialization/deserialization function, converts tuples to tab-delimited
lines. Pig's BinarySerializer and BinaryDeserializer functions treat the entire file as a byte
stream (no formatting or interpretation takes place). You can also write your own
serialization/deserialization functions.

28.3.2. About Ship

Use the ship option to send streaming binary and supporting files, if any, from the client node
to the compute nodes. Pig does not automatically ship dependencies; it is your responsibility

Pig Latin Manual

Page 98
Copyright © 2007 The Apache Software Foundation. All rights reserved.

to explicitly specify all the dependencies and to make sure that the software the processing
relies on (for instance, perl or python) is installed on the cluster. Supporting files are shipped
to the task's current working directory and only relative paths should be specified. Any
pre-installed binaries should be specified in the path.

Only files, not directories, can be specified with the ship option. One way to work around
this limitation is to tar all the dependencies into a tar file that accurately reflects the structure
needed on the compute nodes, then have a wrapper for your script that un-tars the
dependencies prior to execution.

Note that the ship option has two components: the source specification, provided in the ship
clause, is the view of your machine; the command specification is the view of the cluster.The
only guarantee is that the shipped files are available is the current working directory of the
launched job and that your current working directory is also on the PATH environment
variable.

Shipping files to relative paths or absolute paths is not supported since you might not have
permission to read/write/execute from arbitrary paths on the clusters.

28.3.3. About Cache

The ship option works with binaries, jars, and small datasets. However, loading larger
datasets at run time for every execution can severely impact performance. Instead, use the
cache option to access large files already moved to and available on the compute nodes. Only
files, not directories, can be specified with the cache option.

28.4. Example: Input/Output

In this example PigStorage is the default serialization/deserialization function. The tuples
from relation A are converted to tab-delimited lines that are passed to the script.

X = STREAM A THROUGH `stream.pl`;

In this example PigStorage is used as the serialization/deserialization function, but a comma
is used as the delimiter.

DEFINE Y `stream.pl` INPUT(stdin USING PigStorage(',')) OUTPUT (stdout USING PigStorage(','));

X = STREAM A THROUGH Y;

In this example user-defined serialization/deserialization functions are used with the script.

DEFINE Y `stream.pl` INPUT(stdin USING MySerializer) OUTPUT (stdout USING MyDeserializer);

Pig Latin Manual

Page 99
Copyright © 2007 The Apache Software Foundation. All rights reserved.

X = STREAM A THROUGH Y;

28.5. Example: Ship/Cache

In this example ship is used to send the script to the cluster compute nodes.

DEFINE Y `stream.pl` SHIP('/work/stream.pl');

X = STREAM A THROUGH Y;

In this example cache is used to specify a file located on the cluster compute nodes.

DEFINE Y `stream.pl data.gz` SHIP('/work/stream.pl') CACHE('/input/data.gz#data.gz');

X = STREAM A THROUGH Y;

28.6. Example: Logging

In this example the streaming stderr is stored in the _logs/<dir> directory of the job's output
directory. Because the job can have multiple streaming applications associated with it, you
need to ensure that different directory names are used to avoid conflicts. Pig stores up to 100
tasks per streaming job.

DEFINE Y `stream.pl` stderr('<dir>' limit 100);

X = STREAM A THROUGH Y;

In this example a function is defined for use with the FOREACH …GENERATE operator.

REGISTER /src/myfunc.jar

DEFINE myFunc myfunc.MyEvalfunc('foo');

A = LOAD 'students';

B = FOREACH A GENERATE myFunc($0);

In this example a command is defined for use with the STREAM operator.

A = LOAD 'data';

DEFINE cmd `stream_cmd –input file.dat`

B = STREAM A through cmd.

Pig Latin Manual

Page 100
Copyright © 2007 The Apache Software Foundation. All rights reserved.

29. REGISTER

Registers a JAR file so that the UDFs in the file can be used.

29.1. Syntax

REGISTER alias;

29.2. Terms

alias The path of a Java JAR file. Do not place the name in
quotes.

29.3. Usage

Use the REGISTER statement to specify the path of a Java JAR file containing UDFs.

For more information about UDFs, see the User Defined Function Guide. Note that Pig
currently only supports functions written in Java.

29.4. Example

In this example REGISTER states that myfunc.jar is located in the /src directory.

/src $ java -jar pig.jar –

REGISTER /src/myfunc.jar;

A = LOAD 'students';

B = FOREACH A GENERATE myfunc.MyEvalFunc($0);

30. Eval Functions

30.1. AVG

Computes the average of the numeric values in a single-column bag.

30.1.1. Syntax

Pig Latin Manual

Page 101
Copyright © 2007 The Apache Software Foundation. All rights reserved.

AVG(expression)

30.1.2. Terms

expression Any expression whose result is a bag. The elements
of the bag should be data type int, long, float, or
double.

30.1.3. Usage

Use the AVG function to compute the average of the numeric values in a single-column bag.
AVG requires a preceding GROUP ALL statement for global averages and a GROUP BY
statement for group averages.

30.1.4. Example

In this example the average GPA for each student is computed (see the GROUP operators for
information about the field names in relation B).

A = LOAD 'student.txt' AS (name:chararray, term:chararray, gpa:float);

DUMP A;

(John,fl,3.9F)

(John,wt,3.7F)

(John,sp,4.0F)

(John,sm,3.8F)

(Mary,fl,3.8F)

(Mary,wt,3.9F)

(Mary,sp,4.0F)

(Mary,sm,4.0F)

B = GROUP A BY name;

DUMP B;

(John,{(John,fl,3.9F),(John,wt,3.7F),(John,sp,4.0F),(John,sm,3.8F)})

(Mary,{(Mary,fl,3.8F),(Mary,wt,3.9F),(Mary,sp,4.0F),(Mary,sm,4.0F)})

Pig Latin Manual

Page 102
Copyright © 2007 The Apache Software Foundation. All rights reserved.

C = FOREACH B GENERATE A.name, AVG(A.gpa);

DUMP C;

({(John),(John),(John),(John)},3.850000023841858)

({(Mary),(Mary),(Mary),(Mary)},3.925000011920929)

30.1.5. Types Tables

int long float double chararray bytearray

AVG long long double double error cast as
double

30.2. CONCAT

Concatenates two fields of type chararray or two fields of type bytearray.

30.2.1. Syntax

CONCAT (expression, expression)

30.2.2. Terms

expression An expression with data types chararray or bytearray.

30.2.3. Usage

Use the CONCAT function to concatenate two elements. The data type of the two elements
must be the same, either chararray or bytearray.

30.2.4. Example

In this example fields f2 and f3 are concatenated.

A = LOAD 'data' as (f1:chararray, f2:chararray, f3:chararray);

DUMP A;

(apache,open,source)

(hadoop,map,reduce)

Pig Latin Manual

Page 103
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(pig,pig,latin)

X = FOREACH A GENERATE CONCAT(f2,f3);

DUMP X;

(opensource)

(mapreduce)

(piglatin)

30.2.5. Types Tables

chararray bytearray

chararray chararray cast as chararray

bytearray bytearray

30.3. COUNT

Computes the number of elements in a bag. COUNT requires a preceding GROUP ALL
statement for global counts and a GROUP BY statement for group counts.

30.3.1. Syntax

COUNT(expression)

30.3.2. Terms

expression An expression with data type bag.

30.3.3. Usage

Use the COUNT function to compute the number of elements in a bag.

30.3.4. Example

In this example the tuples in the bag are counted (see the GROUP operator for information
about the field names in relation B).

Pig Latin Manual

Page 104
Copyright © 2007 The Apache Software Foundation. All rights reserved.

A = LOAD 'data' AS (f1:int,f2:int,f3:int);

DUMP A;

(1,2,3)

(4,2,1)

(8,3,4)

(4,3,3)

(7,2,5)

(8,4,3)

B = GROUP A BY f1;

DUMP B;

(1,{(1,2,3)})

(4,{(4,2,1),(4,3,3)})

(7,{(7,2,5)})

(8,{(8,3,4),(8,4,3)})

X = FOREACH B GENERATE COUNT(A);

DUMP X;

(1L)

(2L)

(1L)

(2L)

30.3.5. Types Tables

int long float double chararray bytearray

COUNT long long long long long long

30.4. DIFF

Compares two fields in a tuple.

Pig Latin Manual

Page 105
Copyright © 2007 The Apache Software Foundation. All rights reserved.

30.4.1. Syntax

DIFF (expression, expression)

30.4.2. Terms

expression An expression with any data type.

30.4.3. Usage

The DIFF function compares two fields in a tuple. If the field values match, null is returned.
If the field values do not match, the non-matching elements are returned.

30.4.4. Example

In this example the two fields are bags. DIFF compares the tuples in each bag.

A = LOAD 'bag_data' AS (B1:bag{T1:tuple(t1:int,t2:int)},B2:bag{T2:tuple(f1:int,f2:int)});

DUMP A;

({(8,9),(0,1)},{(8,9),(1,1)})

({(2,3),(4,5)},{(2,3),(4,5)})

({(6,7),(3,7)},{(2,2),(3,7)})

DESCRIBE A;

a: {B1: {T1: (t1: int,t2: int)},B2: {T2: (f1: int,f2: int)}}

X = FOREACH A DIFF(B1,B2);

grunt> dump x;

({(0,1),(1,1)})

({})

({(6,7),(2,2)})

30.5. MAX

Computes the maximum of the numeric values or chararrays in a single-column bag. MAX
requires a preceding GROUP ALL statement for global maximums and a GROUP BY

Pig Latin Manual

Page 106
Copyright © 2007 The Apache Software Foundation. All rights reserved.

statement for group maximums.

30.5.1. Syntax

MAX(expression)

30.5.2. Terms

expression An expression with data types int, long, float, double,
or chararray.

30.5.3. Usage

Use the MAX function to compute the maximum of the numeric values or chararrays in a
single-column bag.

30.5.4. Example

In this example the maximum GPA for all terms is computed for each student (see the
GROUP operator for information about the field names in relation B).

A = LOAD 'student' AS (name:chararray, session:chararray, gpa:float);

DUMP A;

(John,fl,3.9F)

(John,wt,3.7F)

(John,sp,4.0F)

(John,sm,3.8F)

(Mary,fl,3.8F)

(Mary,wt,3.9F)

(Mary,sp,4.0F)

(Mary,sm,4.0F)

B = GROUP A BY name;

DUMP B;

(John,{(John,fl,3.9F),(John,wt,3.7F),(John,sp,4.0F),(John,sm,3.8F)})

Pig Latin Manual

Page 107
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(Mary,{(Mary,fl,3.8F),(Mary,wt,3.9F),(Mary,sp,4.0F),(Mary,sm,4.0F)})

X = FOREACH B GENERATE group, MAX(A.gpa);

DUMP X;

(John,4.0F)

(Mary,4.0F)

30.5.5. Types Tables

int long float double chararray bytearray

MAX int long float double chararray cast as
double

30.6. MIN

Computes the minimum of the numeric values or chararrays in a single-column bag. MIN
requires a preceding GROUP… ALL statement for global minimums and a GROUP … BY
statement for group minimums.

30.6.1. Syntax

MIN(expression)

30.6.2. Terms

expression An expression with data types int, long, float, double,
or chararray.

30.6.3. Usage

Use the MIN function to compute the minimum of a set of numeric values or chararrays in a
single-column bag.

30.6.4. Example

In this example the minimum GPA for all terms is computed for each student (see the
GROUP operator for information about the field names in relation B).

Pig Latin Manual

Page 108
Copyright © 2007 The Apache Software Foundation. All rights reserved.

A = LOAD 'student' AS (name:chararray, session:chararray, gpa:float);

DUMP A;

(John,fl,3.9F)

(John,wt,3.7F)

(John,sp,4.0F)

(John,sm,3.8F)

(Mary,fl,3.8F)

(Mary,wt,3.9F)

(Mary,sp,4.0F)

(Mary,sm,4.0F)

B = GROUP A BY name;

DUMP B;

(John,{(John,fl,3.9F),(John,wt,3.7F),(John,sp,4.0F),(John,sm,3.8F)})

(Mary,{(Mary,fl,3.8F),(Mary,wt,3.9F),(Mary,sp,4.0F),(Mary,sm,4.0F)})

X = FOREACH B GENERATE group, MIN(A.gpa);

DUMP X;

(John,3.7F)

(Mary,3.8F)

30.6.5. Types Tables

int long float double chararray bytearray

MIN int long float double chararray cast as
double

30.7. SIZE

Computes the number of elements based on the data type.

Pig Latin Manual

Page 109
Copyright © 2007 The Apache Software Foundation. All rights reserved.

30.7.1. Syntax

SIZE(expression)

30.7.2. Terms

expression An expression with any data type.

30.7.3. Usage

Use the SIZE function to compute the number of elements based on the data type (see the
Types Tables below).

30.7.4. Example

In this example the number of characters in the first field is computed.

A = LOAD 'data' as (f1:chararray, f2:chararray, f3:chararray);

(apache,open,source)

(hadoop,map,reduce)

(pig,pig,latin)

X = FOREACH A GENERATE SIZE(f1);

DUMP X;

(6L)

(6L)

(3L)

30.7.5. Types Tables

int returns 1

long returns 1

float returns 1

Pig Latin Manual

Page 110
Copyright © 2007 The Apache Software Foundation. All rights reserved.

double returns 1

chararray returns number of characters in the array

bytearray returns number of bytes in the array

tuple returns number of fields in the tuple

bag returns number of tuples in bag

map returns number of key/value pairs in map

30.8. SUM

Computes the sum of the numeric values in a single-column bag. SUM requires a preceding
GROUP ALL statement for global sums and a GROUP BY statement for group sums.

30.8.1. Syntax

SUM(expression)

30.8.2. Terms

expression An expression with data types int, long, float, double,
or bytearray cast as double.

30.8.3. Usage

Use the SUM function to compute the sum of a set of numeric values in a single-column bag.

30.8.4. Example

In this example the number of pets is computed. (see the GROUP operator for information
about the field names in relation B).

A = LOAD 'data' AS (owner:chararray, pet_type:chararray, pet_num:int);

DUMP A;

(Alice,turtle,1)

Pig Latin Manual

Page 111
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(Alice,goldfish,5)

(Alice,cat,2)

(Bob,dog,2)

(Bob,cat,2)

B = GROUP A BY owner;

DUMP B;

(Alice,{(Alice,turtle,1),(Alice,goldfish,5),(Alice,cat,2)})

(Bob,{(Bob,dog,2),(Bob,cat,2)})

X = FOREACH B GENERATE group, SUM(A.pet_num);

DUMP X;

(Alice,8L)

(Bob,4L)

30.8.5. Types Tables

int long float double chararray bytearray

SUM long long double double error cast as
double

30.9. TOKENIZE

Splits a string and outputs a bag of words.

30.9.1. Syntax

TOKENIZE(expression)

30.9.2. Terms

expression An expression with data type chararray.

Pig Latin Manual

Page 112
Copyright © 2007 The Apache Software Foundation. All rights reserved.

30.9.3. Usage

Use the TOKENIZE function to split a string of words (all words in a single tuple) into a bag
of words (each word in a single tuple). The following characters are considered to be word
separators: space, double quote("), coma(,) parenthesis(()), star(*).

30.9.4. Example

In this example the strings in each row are split.

A = LOAD 'data' AS (f1:chararray);

DUMP A;

(Here is the first string.)

(Here is the second string.)

(Here is the third string.)

X = FOREACH A GENERATE TOKENIZE(f1);

DUMP X;

({(Here),(is),(the),(first),(string.)})

({(Here),(is),(the),(second),(string.)})

({(Here),(is),(the),(third),(string.)})

31. Load/Store Functions

Load/Store functions determine how data goes into Pig and comes out of Pig. In addition to
the Pig built-in load/store functions, you can also write your functions (see the User-Defined
Function Manual).

31.1. BinarySerializer

Converts a file to a byte stream.

31.1.1. Syntax

BinarySerializer()

Pig Latin Manual

Page 113
Copyright © 2007 The Apache Software Foundation. All rights reserved.

31.1.2. Terms

none no parameters

31.1.3. Usage

Use the BinarySerializer with the DEFINE operator to convert a file to a byte stream. No
Formatting or interpretation takes place.

31.1.4. Example

In this example the BinarySerializer and BinaryDeserializer are use to convert data to and
from streaming format.

DEFINE Y `stream.pl` INPUT(stdin USING BinarySerializer()) OUTPUT (stdout USING
BinaryDeserializer());

X = STREAM A THROUGH Y;

31.2. BinaryDeserializer

Converts a byte stream into a file.

31.2.1. Syntax

BinarySerializer()

31.2.2. Terms

none no parameters

31.2.3. Usage

Use the BinaryDeserializer with the DEFINE operator to convert a byte stream into a file. No
Formatting or interpretation takes place.

31.2.4. Example

In this example the BinarySerializer and BinaryDeserializer are use to convert data to and
from streaming format.

Pig Latin Manual

Page 114
Copyright © 2007 The Apache Software Foundation. All rights reserved.

DEFINE Y `stream.pl` INPUT(stdin USING BinarySerializer()) OUTPUT (stdout USING
BinaryDeserializer());

X = STREAM A THROUGH Y;

31.3. BinStorage

Loads and stores data in machine-readable format.

31.3.1. Syntax

BinStorage()

31.3.2. Terms

none no parameters

31.3.3. Usage

BinStorage works with data that is represented on disk in machine-readable format.

BinStorage is used internally by Pig to store the temporary data that is created between
multiple map/reduce jobs.

31.3.4. Example

In this example BinStorage is used with the LOAD and STORE functions.

A = LOAD 'data' USING BinStorage();

STORE X into 'output' USING BinStorage();

31.4. PigStorage

Loads and stores data in UTF-8 format.

31.4.1. Syntax

PigStorage(field_delimiter)

31.4.2. Terms

Pig Latin Manual

Page 115
Copyright © 2007 The Apache Software Foundation. All rights reserved.

field_delimiter Parameter.

The default field delimiter is tab ('\t'). You can
specify other characters as field delimiters.

31.4.3. Usage

PigStorage works with structured text files in human-readable UTF-8 format. PigStorage also
works with simple and complex data types and is the default function for the LOAD and
STORE operators.

1. For load statements, PigStorage expects data to be formatted as delimiter-separated fields
and newline-separated records.

2. For store statements, PigStorage outputs data as delimiter-separated fields and
newline-separated records.

For both load and store statements the default field delimiter is the tab character ('\t'). You
can use other characters as field delimiters, but separators such as ^A or Ctrl-A should be
represented in Unicode (\u0001) using UTF-16 encoding (see Wikipedia ASCII, Unicode,
and UTF-16).

31.4.4. Example

In this example PigStorage expects input.txt to contain tab-separated fields and
newline-separated records. The statements are equivalent.

A = LOAD 'student' USING PigStorage('\t') AS (name: chararray, age:int, gpa: float);

A = LOAD 'student' AS (name: chararray, age:int, gpa: float);

In this example PigStorage stores the contents of X into files with fields that are delimited
with an asterisk (*). The STORE function specifies that the files will be located in a
directory named output and that the files will be named part-nnnnn (for example,
part-00000).

STORE X INTO 'output' USING PigStorage('*');

31.5. PigDump

Stores data in UTF-8 format.

31.5.1. Syntax

Pig Latin Manual

Page 116
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-16

PigDump()

31.5.2. Terms

none no parameters

31.5.3. Usage

PigDump stores data as tuples in human-readable UTF-8 format.

31.5.4. Example

In this example PigDump is used with the STORE function.

STORE X INTO 'output' USING PigDump();

31.6. TextLoader

Loads unstructured data in UTF-8 format.

31.6.1. Syntax

TextLoader()

31.6.2. Terms

none no parameters

31.6.3. Usage

TextLoader works with unstructured data in UTF8 format. Each resulting tuple contains a
single field with one line of input text. TextLoader cannot be used to store data.

31.6.4. Example

In this example TextLoader is used with the LOAD function.

A = LOAD 'data' USING TextLoader();

Pig Latin Manual

Page 117
Copyright © 2007 The Apache Software Foundation. All rights reserved.

32. cat

Prints the content of one or more files to the screen.

32.1. Syntax

cat path [path …]

32.2. Terms

path The location of a file or directory.

32.3. Usage

The cat command is similar to the Unix cat command. If multiple files are specified, content
from all files is concatenated together. If multiple directories are specified, content from all
files in all directories is concatenated together.

32.4. Example

In this example the students file in the data directory is printed.

grunt> cat data/students

joe smith

john adams

anne white

grunt>

33. cd

Changes the current directory to another directory.

33.1. Syntax

cd [dir]

33.2. Terms

Pig Latin Manual

Page 118
Copyright © 2007 The Apache Software Foundation. All rights reserved.

dir The name of the directory you want to navigate to.

33.3. Usage

The cd command is similar to the Unix cd command and can be used to navigate the file
system. If a directory is specified, this directory is made your current working directory and
all other operations happen relatively to this directory. If no directory is specified, your home
directory (/user/NAME) becomes the current working directory.

33.4. Example

In this example we move to the /data directory.

grunt> cd /data

34. copyFromLocal

Copies a file or directory from the local file system to HDFS.

34.1. Syntax

copyFromLocal src_path dst_path

34.2. Terms

src_path The path on the local file system for a file or
directory

dst_path The path on HDFS.

34.3. Usage

The copyFromLocal command enables you to copy a file or a director from the local file
system to the Hadoop Distributed File System (HDFS). If a directory is specified, it is
recursively copied over. Dot "." can be used to specify that the new file/directory should be
created in the current working directory and retain the name of the source file/directory.

34.4. Example

Pig Latin Manual

Page 119
Copyright © 2007 The Apache Software Foundation. All rights reserved.

In this example a file (students) and a directory (/data/tests) are copied from the local file
system to HDFS.

grunt> copyFromLocal /data/students students

grunt> ls students

/data/students <r 3> 8270

grunt> copyFromLocal /data/tests new_tests

grunt> ls new_test

/data/new_test/test1.data<r 3> 664

/data/new_test/test2.data<r 3> 344

/data/new_test/more_data

35. copyToLocal

Copies a file or directory from HDFS to a local file system.

35.1. Syntax

copyToLocal src_path dst_path

35.2. Terms

src_path The path on HDFS.

dst_path The path on the local file system for a file or
directory.

35.3. Usage

The copyToLocal command enables you to copy a file or a director from Hadoop Distributed
File System (HDFS) to a local file system. If a directory is specified, it is recursively copied
over. Dot "." can be used to specify that the new file/directory should be created in the
current working directory (directory from which the script was executed or grunt shell
started) and retain the name of the source file/directory.

35.4. Example

Pig Latin Manual

Page 120
Copyright © 2007 The Apache Software Foundation. All rights reserved.

In this example two files are copied from HDFS to the local file system.

grunt> copyToLocal students /data

grunt> copyToLocal data /data/mydata

36. cp

Copies a file or directory within HDFS.

36.1. Syntax

cp src_path dst_path

36.2. Terms

src_path The path on HDFS.

dst_path The path on HDFS.

36.3. Usage

The cp command is similar to the Unix cp command and enables you to copy files or
directories within DFS. If a directory is specified, it is recursively copied over. Dot "." can be
used to specify that the new file/directory should be created in the current working directory
and retain the name of the source file/directory.

36.4. Example

In this example a file (students) is copied to another file (students_save).

grunt> cp students students_save

37. exec

Run a Pig script.

37.1. Syntax

run script

Pig Latin Manual

Page 121
Copyright © 2007 The Apache Software Foundation. All rights reserved.

37.2. Terms

script The name of a Pig script.

37.3. Usage

Use the exec command to run a Pig script with no interaction between the script and the
Grunt shell. Aliases defined in the script are not available to the shell; however, the files
produced as the output of the script and stored on the system are visible after the script is run.
Aliases defined via the shell are not available to the script.

For comparison, see the run command. Both the exec and run commands are useful for
debugging because you can modify a Pig script in an editor and then rerun the script in the
Grunt shell without leaving the shell. Also, both commands promote Pig script modularity as
they allow you to reuse existing components.

The exec command supports parameter substitution.

37.4. Example

In this example the script is displayed and run.

grunt> cat myscript.pig

a = LOAD 'student' AS (name, age, gpa);

b = LIMIT a 3;

DUMP b;

grunt> exec myscript.pig

(alice,20,2.47)

(luke,18,4.00)

(holly,24,3.27)

In this example parameter substitution is used with the exec command.

grunt> cat myscript.pig

a = LOAD 'student' AS (name, age, gpa);

b = ORDER a BY name;

Pig Latin Manual

Page 122
Copyright © 2007 The Apache Software Foundation. All rights reserved.

STORE b into '$out';

grunt> exec –param out=myoutput myscript.pig

38. ls

Lists the contents of a directory.

38.1. Syntax

ls [path]

38.2. Terms

path The name of the path/directory.

38.3. Usage

The ls command is similar to the Unix ls command and enables you to list the contents of a
directory. If DIR is specified, the command lists the content of the specified directory.
Otherwise, the content of the current working directory is listed.

38.4. Example

In this example the contents of the data directory are listed.

grunt> ls /data

/data/DDLs <dir>

/data/count <dir>

/data/data <dir>

/data/schema <dir>

39. mkdir

Creates a new directory.

39.1. Syntax

Pig Latin Manual

Page 123
Copyright © 2007 The Apache Software Foundation. All rights reserved.

mkdir path

39.2. Terms

path The name of the path/directory.

39.3. Usage

The mkdir command is similar to the Unix mkdir command and enables you to create a new
directory. If you specify a directory or path that does not exist, it will be created.

39.4. Example

In this example a directory and subdirectory are created.

grunt> mkdir data/20070905

40. mv

Moves a file or directory within the Hadoop Distributed File System (HDFS).

40.1. Syntax

mv src_path dst_path

40.2. Terms

src_path The path on HDFS.

dst_path The path on HDFS.

40.3. Usage

The mv command is identical to the Unix mv command (which copies files or directories
within DFS) except that it deletes the source file or directory as soon as it is copied.

If a directory is specified, it is recursively moved. Dot "." can be used to specify that the new
file/directory should be created in the current working directory and retain the name of the
source file/directory.

Pig Latin Manual

Page 124
Copyright © 2007 The Apache Software Foundation. All rights reserved.

40.4. Example

In this example the output directory is copied to output2 and then deleted.

grunt> mv output output2

grunt> ls output

File or directory output does not exist.

grunt> ls output2

/data/output2/map-000000<r 3> 508844

/data/output2/output3 <dir>

/data/output2/part-00000<r 3> 0

41. pwd

Prints the name of the current working directory.

41.1. Syntax

pwd

41.2. Terms

none no parameters

41.3. Usage

The pwd command is identical to Unix pwd command and it prints the name of the current
working directory.

41.4. Example

In this example the name of the current working directory is /data.

grunt> pwd

/data

Pig Latin Manual

Page 125
Copyright © 2007 The Apache Software Foundation. All rights reserved.

42. rm

Removes one or more files or directories.

42.1. Syntax

rm path [path…]

42.2. Terms

path The name of the path/directory/file.

42.3. Usage

The rm command is similar to the Unix rm command and enables you to remove one or more
files or directories.

Note: This command recursively removes a directory even if it is not empty and it does not
confirm remove and the removed data is not recoverable.

42.4. Example

In this example files are removed.

grunt> rm /data/students

grunt> rm students students_sav

43. rmf

Forcibly removes one or more files or directories.

43.1. Syntax

rmf path [path …]

43.2. Terms

path The name of the path/directory/file.

Pig Latin Manual

Page 126
Copyright © 2007 The Apache Software Foundation. All rights reserved.

43.3. Usage

The rmf command is similar to the Unix rm -f command and enables you to forcibly remove
one or more files or directories.

Note: This command recursively removes a directory even if it is not empty and it does not
confirm remove and the removed data is not recoverable.

43.4. Example

In this example files are forcibly removed.

grunt> rmf /data/students

grunt> rmf students students_sav

44. run

Run a Pig script.

44.1. Syntax

run script

44.2. Terms

script The name of a Pig script.

44.3. Usage

Use the run command to run a Pig script that can interact with the Grunt shell. The script has
access to aliases defined externally via the Grunt shell. The Grunt shell has access to aliases
defined within the script. All commands from the script are visible in the command history.

For comparison, see the exec command. Both the run and exec commands are useful for
debugging because you can modify a Pig script in an editor and then rerun the script in the
Grunt shell without leaving the shell. Also, both commands promote Pig script modularity as
they allow you to reuse existing components.

The run command supports parameter substitution.

Pig Latin Manual

Page 127
Copyright © 2007 The Apache Software Foundation. All rights reserved.

44.4. Example

In this example the script interacts with the results of commands issued via the Grunt shell.

grunt> cat myscript.pig

b = ORDER a BY name;

c = LIMIT b 10;

grunt> a = LOAD 'student' AS (name, age, gpa);

grunt> run myscript.pig

grunt> d = LIMIT c 3;

grunt> DUMP d;

(alice,20,2.47)

(alice,27,1.95)

(alice,36,2.27)

In this example parameter substitution is used with the run command.

grunt> a = LOAD 'student' AS (name, age, gpa);

grunt> cat myscript.pig

b = ORDER a BY name;

STORE b into '$out';

grunt> run –param out=myoutput myscript.pig

45. Utility Commands

45.1. help

Prints a list of Pig commands.

45.1.1. Syntax

help

Pig Latin Manual

Page 128
Copyright © 2007 The Apache Software Foundation. All rights reserved.

45.1.2. Terms

none no parameters

45.1.3. Usage

The help command prints a list of Pig commands.

45.1.4. Example

In this example the students file in the data directory is printed out.

grunt> help

Commands:

<pig latin statement>;

store <alias> into <filename> [using <functionSpec>]

dump <alias>

etc ….

45.2. kill

Kills a job.

45.2.1. Syntax

kill jobid

45.2.2. Terms

jobid The job id.

45.2.3. Usage

The kill command enables you to kill a job based on a job id.

45.2.4. Example

Pig Latin Manual

Page 129
Copyright © 2007 The Apache Software Foundation. All rights reserved.

In this example the job with id job_0001 is killed.

grunt> kill job_0001

45.3. quit

Quits from the Pig grunt shell.

45.3.1. Syntax

exit

45.3.2. Terms

none no parameters

45.3.3. Usage

The quit command enables you to quit or exit the Pig grunt shell.

45.3.4. Example

In this example the quit command exits the Pig grunt shall.

grunt> quit

45.4. set

Assigns values to keys used in Pig.

45.4.1. Syntax

set key 'value'

45.4.2. Terms

key Key (see table). Case sensitive.

value Value for key (see table). Case sensitive.

Pig Latin Manual

Page 130
Copyright © 2007 The Apache Software Foundation. All rights reserved.

45.4.3. Usage

The set command enables you to assign values to keys, as shown here:

Key Value Description

debug on/off enables/disables debug-level
logging

job.name single quoted string that contains
the name

sets user-specified name for the
job

45.4.4. Example

In this example debug is set on and the job is assigned a name.

grunt> set debug on

grunt> set job.name 'my job'

Pig Latin Manual

Page 131
Copyright © 2007 The Apache Software Foundation. All rights reserved.

	1 Conventions
	2 Pig Latin Statements
	2.1 Processing Pig Latin Statements
	2.2 Using Comments in Scripts

	3 Relations, Bags, Tuples, and Fields
	3.1 Referencing Relations
	3.2 Referencing Fields
	3.3 Referencing Fields that are Complex Data Types

	4 Case Sensitivity
	5 Working with Data
	6 Increasing Parallelism
	7 Increasing Performance
	8 Retrieving Results
	9 Debugging Pig Latin Scripts
	10 Data Types
	10.1 Tuple
	10.1.1 Syntax
	10.1.2 Terms
	10.1.3 Usage
	10.1.4 Examples

	10.2 Bag
	10.2.1 Syntax: Inner bag
	10.2.2 Terms
	10.2.3 Usage
	10.2.4 Example: Outer Bag
	10.2.5 Example: Inner Bag

	10.3 Map
	10.3.1 Syntax (<> denotes optional)
	10.3.2 Terms
	10.3.3 Usage
	10.3.4 Example

	11 Nulls
	11.1 Nulls and Operators
	11.1.1 Example: COUNT function

	11.2 Nulls and Constants
	11.3 Operations That Produce Nulls
	11.3.1 Example: Accessing a field that does not exist in a tuple

	11.4 Nulls and Load Functions

	12 Constants
	13 Expressions
	14 Schemas
	14.1 Schemas with LOAD and STREAM Statements
	14.2 Schemas with FOREACH Statements
	14.3 Schemas for Simple Data Types
	14.3.1 Syntax
	14.3.2 Terms
	14.3.3 Examples

	14.4 Schemas for Complex Data Types
	14.5 Tuple Schema
	14.5.1 Syntax
	14.5.2 Terms
	14.5.3 Examples

	14.6 Bag Schema
	14.6.1 Syntax
	14.6.2 Terms
	14.6.3 Examples

	14.7 Map Schema
	14.7.1 Syntax (where <> means optional)
	14.7.2 Terms
	14.7.3 Example

	14.8 Schemas for Multiple Types
	14.8.1 Example

	15 Parameter Substitution
	15.1 Description
	15.1.1 Syntax: Specifying parameters using the Pig command line
	15.1.2 Syntax: Specifying parameters using preprocessor statements in a Pig script
	15.1.3 Terms
	15.1.4 Usage
	15.1.4.1 Specifying Parameters
	15.1.4.2 Precedence
	15.1.4.3 Processing Order and Precedence

	15.1.5 Example: Specifying parameters in the command line
	15.1.6 Example: Specifying parameters using a parameter file
	15.1.7 Example: Specifying parameters using the declare statement
	15.1.8 Example: Specifying parameters using the default statement
	15.1.9 Examples: Specifying parameter values as a sequence of characters
	15.1.10 Example: Specifying parameter values as a command

	16 Keywords
	17 Arithmetic Operators
	17.1 Description
	17.1.1 Examples
	17.1.2 In this example the modulo operator is used with fields f1 and f2.
	17.1.3 Types Table: addition (+) and subtraction (-) operators
	17.1.4 Types Table: multiplication (*) and division (/) operators
	17.1.5 Types Table: modulo (%) operator

	18 Comparison Operators
	18.1 Description
	18.1.1 Example: numeric
	18.1.2 Example: string
	18.1.3 Example: matches
	18.1.4 Types Table: equal (==) and not equal (!=) operators
	18.1.5
	18.1.6 Types Table: matches operator

	19 Null Operators
	19.1 Description
	19.1.1 Example

	19.2 Types Table

	20 Boolean Operators
	20.1 Description
	20.1.1 Example

	21 Dereference Operators
	21.1 Description
	21.1.1 Example: Tuple
	21.1.2 Example: Bag
	21.1.3 Example: Tuple and Bag
	21.1.4 Example: Map

	22 Sign Operators
	22.1 Description
	22.1.1 Example
	22.1.2 Types Table: negation (-) operator

	23 Cast Operators
	23.1 Description
	23.1.1 Syntax
	23.1.2 Terms
	23.1.3 Usage
	23.1.4 Examples

	24 Relational Operators
	24.1 COGROUP
	24.1.1 Syntax
	24.1.2 Terms
	24.1.3 Usage
	24.1.4 Examples

	24.2 CROSS
	24.2.1 Syntax
	24.2.2 Terms
	24.2.3 Usage
	24.2.4 Example

	24.3 DISTINCT
	24.3.1 Syntax
	24.3.2 Terms
	24.3.3 Usage
	24.3.4 Example

	24.4 DUMP
	24.4.1 Syntax
	24.4.2 Terms
	24.4.3 Usage
	24.4.4 Example

	24.5 FILTER
	24.5.1 Syntax
	24.5.2 Terms
	24.5.3 Usage
	24.5.4 Examples

	24.6 FOREACH … GENERATE
	24.6.1 Syntax
	24.6.2 Terms
	24.6.3 Usage
	24.6.4 Examples
	24.6.5 Example: Projection
	24.6.6 Example: Nested Projection
	24.6.7 Example: Schema
	24.6.8 Example: Applying Functions
	24.6.9 Example: Flattening
	24.6.10 Example: Nested Block

	24.7 GROUP
	24.7.1 Syntax
	24.7.2 Terms
	24.7.3 Usage
	24.7.4 Example

	24.8 Example
	24.9 JOIN
	24.9.1 Syntax
	24.9.2 Terms
	24.9.3 Usage
	24.9.4 Example
	24.9.5 Example: Fragment Replicate Join

	24.10 LIMIT
	24.10.1 Syntax
	24.10.2 Terms
	24.10.3 Usage
	24.10.4 Examples

	24.11 LOAD
	24.11.1 Syntax
	24.11.2 Terms
	24.11.3 Usage
	24.11.4 Examples

	24.12 ORDER
	24.12.1 Syntax
	24.12.2 Terms
	24.12.3 Usage
	24.12.4 Examples

	24.13 SPLIT
	24.13.1 Syntax
	24.13.2 Terms
	24.13.3 Usage
	24.13.4 Example

	24.14 STORE
	24.14.1 Syntax
	24.14.2 Terms
	24.14.3 Usage
	24.14.4 Examples

	24.15 STREAM
	24.15.1 Syntax
	24.15.2 Terms
	24.15.3 Usage
	24.15.4 About Data Guarantees
	24.15.5 Example: Data Guarantees
	24.15.6 Example: Schemas
	24.15.7 Additional Examples

	24.16 UNION
	24.16.1 Syntax
	24.16.2 Terms
	24.16.3 Usage
	24.16.4 Example

	25 DESCRIBE
	25.1 Syntax
	25.2 Terms
	25.3 Usage
	25.4 Example

	26 EXPLAIN
	26.1 Syntax
	26.2 Terms
	26.3 Usage
	26.4 Example

	27 ILLUSTRATE
	27.1 Syntax
	27.2 Terms
	27.3 Usage
	27.4 Example

	28 DEFINE
	28.1 Syntax
	28.2 Terms
	28.3 Usage
	28.3.1 About Input and Output
	28.3.2 About Ship
	28.3.3 About Cache

	28.4 Example: Input/Output
	28.5 Example: Ship/Cache
	28.6 Example: Logging

	29 REGISTER
	29.1 Syntax
	29.2 Terms
	29.3 Usage
	29.4 Example

	30 Eval Functions
	30.1 AVG
	30.1.1 Syntax
	30.1.2 Terms
	30.1.3 Usage
	30.1.4 Example
	30.1.5 Types Tables

	30.2 CONCAT
	30.2.1 Syntax
	30.2.2 Terms
	30.2.3 Usage
	30.2.4 Example
	30.2.5 Types Tables

	30.3 COUNT
	30.3.1 Syntax
	30.3.2 Terms
	30.3.3 Usage
	30.3.4 Example
	30.3.5 Types Tables

	30.4 DIFF
	30.4.1 Syntax
	30.4.2 Terms
	30.4.3 Usage
	30.4.4 Example

	30.5 MAX
	30.5.1 Syntax
	30.5.2 Terms
	30.5.3 Usage
	30.5.4 Example
	30.5.5 Types Tables

	30.6 MIN
	30.6.1 Syntax
	30.6.2 Terms
	30.6.3 Usage
	30.6.4 Example
	30.6.5 Types Tables

	30.7 SIZE
	30.7.1 Syntax
	30.7.2 Terms
	30.7.3 Usage
	30.7.4 Example
	30.7.5 Types Tables

	30.8 SUM
	30.8.1 Syntax
	30.8.2 Terms
	30.8.3 Usage
	30.8.4 Example
	30.8.5 Types Tables

	30.9 TOKENIZE
	30.9.1 Syntax
	30.9.2 Terms
	30.9.3 Usage
	30.9.4 Example

	31 Load/Store Functions
	31.1 BinarySerializer
	31.1.1 Syntax
	31.1.2 Terms
	31.1.3 Usage
	31.1.4 Example

	31.2 BinaryDeserializer
	31.2.1 Syntax
	31.2.2 Terms
	31.2.3 Usage
	31.2.4 Example

	31.3 BinStorage
	31.3.1 Syntax
	31.3.2 Terms
	31.3.3 Usage
	31.3.4 Example

	31.4 PigStorage
	31.4.1 Syntax
	31.4.2 Terms
	31.4.3 Usage
	31.4.4 Example

	31.5 PigDump
	31.5.1 Syntax
	31.5.2 Terms
	31.5.3 Usage
	31.5.4 Example

	31.6 TextLoader
	31.6.1 Syntax
	31.6.2 Terms
	31.6.3 Usage
	31.6.4 Example

	32 cat
	32.1 Syntax
	32.2 Terms
	32.3 Usage
	32.4 Example

	33 cd
	33.1 Syntax
	33.2 Terms
	33.3 Usage
	33.4 Example

	34 copyFromLocal
	34.1 Syntax
	34.2 Terms
	34.3 Usage
	34.4 Example

	35 copyToLocal
	35.1 Syntax
	35.2 Terms
	35.3 Usage
	35.4 Example

	36 cp
	36.1 Syntax
	36.2 Terms
	36.3 Usage
	36.4 Example

	37 exec
	37.1 Syntax
	37.2 Terms
	37.3 Usage
	37.4 Example

	38 ls
	38.1 Syntax
	38.2 Terms
	38.3 Usage
	38.4 Example

	39 mkdir
	39.1 Syntax
	39.2 Terms
	39.3 Usage
	39.4 Example

	40 mv
	40.1 Syntax
	40.2 Terms
	40.3 Usage
	40.4 Example

	41 pwd
	41.1 Syntax
	41.2 Terms
	41.3 Usage
	41.4 Example

	42 rm
	42.1 Syntax
	42.2 Terms
	42.3 Usage
	42.4 Example

	43 rmf
	43.1 Syntax
	43.2 Terms
	43.3 Usage
	43.4 Example

	44 run
	44.1 Syntax
	44.2 Terms
	44.3 Usage
	44.4 Example

	45 Utility Commands
	45.1 help
	45.1.1 Syntax
	45.1.2 Terms
	45.1.3 Usage
	45.1.4 Example

	45.2 kill
	45.2.1 Syntax
	45.2.2 Terms
	45.2.3 Usage
	45.2.4 Example

	45.3 quit
	45.3.1 Syntax
	45.3.2 Terms
	45.3.3 Usage
	45.3.4 Example

	45.4 set
	45.4.1 Syntax
	45.4.2 Terms
	45.4.3 Usage
	45.4.4 Example

