
Pig UDF Manual

Table of contents

1 Overview..2

2 Eval Functions... 2

3 Load/Store Functions... 17

4 Comparison Functions... 20

5 Builtin Functions and Function Repositories...20

6 Advanced Topics..21

Copyright © 2007 The Apache Software Foundation. All rights reserved.

1. Overview

Pig provides extensive support for user-defined functions (UDFs) as a way to specify custom
processing. Functions can be a part of almost every operator in Pig. This document describes
how to use existing functions as well as how to write your own functions.

2. Eval Functions

2.1. How to Use a Simple Eval Function

Eval is the most common type of function. It can be used in FOREACH statements as shown
in this script:

-- myscript.pig
REGISTER myudfs.jar;
A = LOAD 'student_data' AS (name: chararray, age: int, gpa: float);
B = FOREACH A GENERATE myudfs.UPPER(name);
DUMP B;

The command below can be used to run the script. Note that all examples in this document
run in local mode for simplicity but the examples can also run in Hadoop mode. For more
information on how to run Pig, please see the PigTutorial.

java -cp pig.jar org.apache.pig.Main -x local myscript.pig

The first line of the script provides the location of the jar file that contains the UDF.
(Note that there are no quotes around the jar file. Having quotes would result in a syntax
error.) To locate the jar file, Pig first checks the classpath. If the jar file can't be found in
the classpath, Pig assumes that the location is either an absolute path or a path relative to the
location from which Pig was invoked. If the jar file can't be found, an error will be printed:
java.io.IOException: Can't read jar file: myudfs.jar.

Multiple register commands can be used in the same script. If the same fully-qualified
function is present in multiple jars, the first occurrence will be used consistently with Java
semantics.

The name of the UDF has to be fully qualified with the package name or an error will be
reported: java.io.IOException: Cannot instantiate:UPPER. Also, the
function name is case sensitive (UPPER and upper are not the same). A UDF can take one or
more parameters. The exact signature of the function should clear from its documentation.

The function provided in this example takes an ASCII string and produces its uppercase
version. If you are familiar with column transformation functions in SQL, you will recognize

Pig UDF Manual

Page 2
Copyright © 2007 The Apache Software Foundation. All rights reserved.

that UPPER fits this concept. However, as we will see later in the document, eval functions
in Pig go beyond column transformation functions and include aggregate and filter functions.

If you are just a user of UDFs, this is most of what you need to know about UDFs to use
them in your code.

2.2. How to Write a Simple Eval Function

Let's now look at the implementation of the UPPER UDF.

package myudfs;
import java.io.IOException;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.Tuple;
import org.apache.pig.impl.util.WrappedIOException;

public class UPPER extends EvalFunc (String)
{

public String exec(Tuple input) throws IOException {
if (input == null || input.size() == 0)

return null;
try{

String str = (String)input.get(0);
return str.toUpperCase();

}catch(Exception e){
throw WrappedIOException.wrap("Caught exception processing

input row ", e);
}

}
}

The first line indicates that the function is part of the myudfs package. The UDF class
extends the EvalFunc class which is the base class for all eval functions. It is
parameterized with the return type of the UDF which is a Java String in this case. We will
look into the EvalFunc class in more detail later, but for now all we need to do is to
implement the exec function. This function is invoked on every input tuple. The input into
the function is a tuple with input parameters in the order they are passed to the function in the
Pig script. In our example, it will contain a single string field corresponding to the student
name.

The first thing to decide is what to do with invalid data. This depends on the format of the
data. If the data is of type bytearray it means that it has not yet been converted to its
proper type. In this case, if the format of the data does not match the expected type, a NULL
value should be returned. If, on the other hand, the input data is of another type, this means
that the conversion has already happened and the data should be in the correct format. This is
the case with our example and that's why it throws an error (line 16.) Note that
WrappedIOException is a helper class to convert the actual exception to an

Pig UDF Manual

Page 3
Copyright © 2007 The Apache Software Foundation. All rights reserved.

IOException.

Also, note that lines 10-11 check if the input data is null or empty and if so returns null.

The actual function implementation is on lines 13-14 and is self-explanatory.

Now that we have the function implemented, it needs to be compiled and included in a jar.
You will need to build pig.jar to compile your UDF. You can use the following set of
commands to checkout the code from SVN repository and create pig.jar:

svn co http://svn.apache.org/repos/asf/hadoop/pig/trunk
cd trunk
ant

You should see pig.jar in your current working directory. The set of commands below
first compiles the function and then creates a jar file that contains it.

cd myudfs
javac -cp pig.jar UPPER.java
cd ..
jar -cf myudfs.jar myudfs

You should now see myudfs.jar in your current working directory. You can use this jar
with the script described in the previous section.

2.3. Aggregate Functions

Aggregate functions are another common type of eval function. Aggregate functions are
usually applied to grouped data, as shown in this script:

-- myscript2.pig
A = LOAD 'student_data' AS (name: chararray, age: int, gpa: float);
B = GROUP A BY name;
C = FOREACH B GENERATE group, COUNT(A);
DUMP C;

The script above uses the COUNT function to count the number of students with the same
name. There are a couple of things to note about this script. First, even though we are using a
function, there is no register command. Second, the function is not qualified with the
package name. The reason for both is that COUNT is a builtin function meaning that it
comes with the Pig distribution. These are the only two differences between builtins and
UDFs. Builtins are discussed in more detail later in this document.

An aggregate function is an eval function that takes a bag and returns a scalar value. One
interesting and useful property of many aggregate functions is that they can be computed
incrementally in a distributed fashion. We call these functions algebraic. COUNT is an
example of an algebraic function because we can count the number of elements in a subset of

Pig UDF Manual

Page 4
Copyright © 2007 The Apache Software Foundation. All rights reserved.

the data and then sum the counts to produce a final output. In the Hadoop world, this means
that the partial computations can be done by the map and combiner, and the final result can
be computed by the reducer.

It is very important for performance to make sure that aggregate functions that are algebraic
are implemented as such. Let's look at the implementation of the COUNT function to see
what this means. (Error handling and some other code is omitted to save space. The full code
can be accessed here.

public class COUNT extends EvalFunc (Long) implements Algebraic{
public Long exec(Tuple input) throws IOException {return count(input);}
public String getInitial() {return Initial.class.getName();}
public String getIntermed() {return Intermed.class.getName();}
public String getFinal() {return Final.class.getName();}
static public class Initial extends EvalFunc (Tuple) {

public Tuple exec(Tuple input) throws IOException {return
TupleFactory.getInstance().newTuple(count(input));}

}
static public class Intermed extends EvalFunc (Tuple) {

public Tuple exec(Tuple input) throws IOException {return
TupleFactory.getInstance().newTuple(sum(input));}

}
static public class Final extends EvalFunc (Long) {

public Tuple exec(Tuple input) throws IOException {return
sum(input);}

}
static protected Long count(Tuple input) throws ExecException {

Object values = input.get(0);
if (values instanceof DataBag) return ((DataBag)values).size();
else if (values instanceof Map) return new

Long(((Map)values).size());
}
static protected Long sum(Tuple input) throws ExecException,

NumberFormatException {
DataBag values = (DataBag)input.get(0);
long sum = 0;
for (Iterator (Tuple) it = values.iterator(); it.hasNext();) {

Tuple t = it.next();
sum += (Long)t.get(0);

}
return sum;

}
}

COUNT implements Algebraic interface which looks like this:

public interface Algebraic{
public String getInitial();
public String getIntermed();
public String getFinal();

}

Pig UDF Manual

Page 5
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/builtin/COUNT.java?view=markup

For a function to be algebraic, it needs to implement Algebraic interface that consist of
definition of three classes derived from EvalFunc. The contract is that the exec function
of the Initial class is called once and is passed the original input tuple. Its output is a
tuple that contains partial results. The exec function of the Intermed class can be called
zero or more times and takes as its input a tuple that contains partial results produced by the
Initial class or by prior invocations of the Intermed class and produces a tuple with
another partial result. Finally, the exec function of the Final class is called and produces
the final result as a scalar type.

Here's the way to think about this in the Hadoop world. The exec function of the Initial
class is invoked once by the map process and produces partial results. The exec function of
the Intermed class is invoked once by each combiner invocation (which can happen
zero or more times) and also produces partial results. The exec function of the Final class
is invoked once by the reducer and produces the final result.

Take a look at the COUNT implementation to see how this is done. Note that the exec
function of the Initial and Intermed classes is parameterized with Tuple and the
exec of the Final class is parameterized with the real type of the function, which in the
case of the COUNT is Long. Also, note that the fully-qualified name of the class needs to be
returned from getInitial, getIntermed, and getFinal methods.

2.4. Filter Functions

Filter functions are eval functions that return a boolean value. Filter functions can be used
anywhere a Boolean expression is appropriate, including the FILTER operator or bincond
expression.

The example below uses the IsEmpy builtin filter function to implement joins.

-- inner join
A = LOAD 'student_data' AS (name: chararray, age: int, gpa: float);
B = LOAD 'voter_data' AS (name: chararray, age: int, registration:
chararay, contributions: float);
C = COGROUP A BY name, B BY name;
D = FILTER C BY not IsEmpty(A);
E = FILTER D BY not IsEmpty(B);
F = FOREACH E GENERATE flatten(A), flatten(B);
DUMP F;

Note that, even if filtering is omitted, the same results will be produced because the
foreach results is a cross product and cross products get rid of empty bags. However,
doing up-front filtering is more efficient since it reduces the input of the cross product.

-- full outer join
A = LOAD 'student_data' AS (name: chararray, age: int, gpa: float);

Pig UDF Manual

Page 6
Copyright © 2007 The Apache Software Foundation. All rights reserved.

B = LOAD 'voter_data' AS (name: chararray, age: int, registration:
chararay, contributions: float);
C = COGROUP A BY name, B BY name;
D = FOREACH C GENERATE group, flatten((IsEmpty(A) ? null : A)),
flatten((IsEmpty(B) ? null : B));
dump D

The implementation of the IsEmpty function looks like this:

import java.io.IOException;
import java.util.Map;
import org.apache.pig.FilterFunc;
import org.apache.pig.backend.executionengine.ExecException;
import org.apache.pig.data.DataBag;
import org.apache.pig.data.Tuple;
import org.apache.pig.data.DataType;
import org.apache.pig.impl.util.WrappedIOException;

public class IsEmpty extends FilterFunc {
public Boolean exec(Tuple input) throws IOException {

if (input == null || input.size() == 0)
return null;

try {
Object values = input.get(0);
if (values instanceof DataBag)

return ((DataBag)values).size() == 0;
else if (values instanceof Map)

return ((Map)values).size() == 0;
else{

throw new IOException("Cannot test a " +
DataType.findTypeName(values) + " for emptiness.");

}
} catch (ExecException ee) {

throw WrappedIOException.wrap("Caught exception processing
input row ", ee);

}
}

}

2.5. Pig Types

The main thing to know about Pig's type system is that Pig uses native Java types for almost
all of its types, as shown in this table.

Pig Type Java Class

bytearray DataByteArray

chararray String

Pig UDF Manual

Page 7
Copyright © 2007 The Apache Software Foundation. All rights reserved.

int Integer

long Long

float Float

double Double

tuple Tuple

bag DataBag

map Map<Object, Object>

All Pig-specific classes are available here

Tuple and DataBag are different in that they are not concrete classes but rather interfaces.
This enables users to extend Pig with their own versions of tuples and bags. As a result,
UDFs cannot directly instantiate bags or tuples; they need to go through factory classes:
TupleFactory and BagFactory.

The builtin TOKENIZE function shows how bags and tuples are created. A function takes a
text string as input and returns a bag of words from the text. (Note that currently Pig bags
always contain tuples.)

package org.apache.pig.builtin;

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.BagFactory;
import org.apache.pig.data.DataBag;
import org.apache.pig.data.Tuple;
import org.apache.pig.data.TupleFactory;

public class TOKENIZE extends EvalFunc (DataBag) {
TupleFactory mTupleFactory = TupleFactory.getInstance();
BagFactory mBagFactory = BagFactory.getInstance();

public DataBag exec(Tuple input) throws IOException
try {

DataBag output = mBagFactory.newDefaultBag();
Object o = input.get(0);
if (!(o instanceof String)) {

throw new IOException("Expected input to be chararray, but

Pig UDF Manual

Page 8
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/data/

got " + o.getClass().getName());
}
StringTokenizer tok = new StringTokenizer((String)o, " \",()*",

false);
while (tok.hasMoreTokens())

output.add(mTupleFactory.newTuple(tok.nextToken()));
return output;

} catch (ExecException ee) {
// error handling goes here

}
}

}

2.6. Schema

The latest version of Pig uses type information for validation and performance. It is
important for UDFs to participate in type propagation. Until now, our UDFs made no effort
to communicate their output schema to Pig. This is because, most of the time, Pig can figure
out this information by using Java's Reflection. If your UDF returns a scalar or a map, no
work is required. However, if your UDF returns a tuple or a bag (of tuples), it needs to
help Pig figure out the structure of the tuple.

If a UDF returns a tuple or a bag and schema information is not provided, Pig assumes
that the tuple contains a single field of type bytearray. If this is not the case, then not
specifying the schema can cause failures. We look at this next.

Let's assume that we have UDF Swap that, given a tuple with two fields, swaps their order.
Let's assume that the UDF does not specify a schema and look at the scripts below:

register myudfs.jar;
A = load 'student_data' as (name: chararray, age: int, gpa: float);
B = foreach A generate flatten(myudfs.Swap(name, age)), gpa;
C = foreach B generate $2;
D = limit B 20;
dump D;

This script will result in the following error cause by line 4.

java.io.IOException: Out of bound access. Trying to access non-existent
column: 2. Schema {bytearray,gpa: float} has 2 column(s).

This is because Pig is only aware of two columns in B while line 4 is requesting the third
column of the tuple. (Column indexing in Pig starts with 0.)

The function, including the schema, looks like this:

package myudfs;
import java.io.IOException;
import org.apache.pig.EvalFunc;

Pig UDF Manual

Page 9
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://java.sun.com/developer/technicalArticles/ALT/Reflection/

import org.apache.pig.data.Tuple;
import org.apache.pig.data.TupleFactory;
import org.apache.pig.impl.logicalLayer.schema.Schema;
import org.apache.pig.data.DataType;

public class Swap extends EvalFunc (Tuple) {
public Tuple exec(Tuple input) throws IOException {

if (input == null || input.size() 2
return null;

try{
Tuple output = TupleFactory.getInstance().newTuple(2);
output.set(0, input.get(1));
output.set(1, input.get(0));
return output;

} catch(Exception e){
System.err.println("Failed to process input; error - " +

e.getMessage());
return null;

}
}
public Schema outputSchema(Schema input) {

try{
Schema tupleSchema = new Schema();
tupleSchema.add(input.getField(1));
tupleSchema.add(input.getField(0));
return new Schema(new

Schema.FieldSchema(getSchemaName(this.getClass().getName().toLowerCase(),
input),tupleSchema, DataType.TUPLE));

}catch (Exception e){
return null;

}
}

}

The function creates a schema with a single field (of type
FieldSchema=) of type =tuple. The name of the field is constructed using the
getSchemaName function of the EvalFunc class. The name consists of the name of the
UDF function, the first parameter passed to it, and a sequence number to guarantee
uniqueness. In the previous script, if you replace dump D; with describe B; , you will
see the following output:

B: {myudfs.swap_age_3::age: int,myudfs.swap_age_3::name: chararray,gpa:
float}

The second parameter to the FieldSchema constructor is the schema representing this
field, which in this case is a tuple with two fields. The third parameter represents the type of
the schema, which in this case is a TUPLE. All supported schema types are defined in the
org.apache.pig.data.DataType class.

public class DataType {
public static final byte UNKNOWN = 0;

Pig UDF Manual

Page 10
Copyright © 2007 The Apache Software Foundation. All rights reserved.

public static final byte NULL = 1;
public static final byte BOOLEAN = 5; // internal use only
public static final byte BYTE = 6; // internal use only
public static final byte INTEGER = 10;
public static final byte LONG = 15;
public static final byte FLOAT = 20;
public static final byte DOUBLE = 25;
public static final byte BYTEARRAY = 50;
public static final byte CHARARRAY = 55;
public static final byte MAP = 100;
public static final byte TUPLE = 110;
public static final byte BAG = 120;
public static final byte ERROR = -1;
// more code here

}

You need to import the org.apache.pig.data.DataType class into your code to
define schemas. You also need to import the schema class
org.apache.pig.impl.logicalLayer.schema.Schema.

The example above shows how to create an output schema for a tuple. Doing this for a bag is
very similar. Let's extend the TOKENIZE function to do that:

package org.apache.pig.builtin;

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.BagFactory;
import org.apache.pig.data.DataBag;
import org.apache.pig.data.Tuple;
import org.apache.pig.data.TupleFactory;
import org.apache.pig.impl.logicalLayer.schema.Schema;
import org.apache.pig.data.DataType;

public class TOKENIZE extends EvalFunc (DataBag) {
TupleFactory mTupleFactory = TupleFactory.getInstance();
BagFactory mBagFactory = BagFactory.getInstance();
public DataBag exec(Tuple input) throws IOException {

try {
DataBag output = mBagFactory.newDefaultBag();
Object o = input.get(0);
if (!(o instanceof String)) {

throw new IOException("Expected input to be chararray, but
got " + o.getClass().getName());

}
StringTokenizer tok = new StringTokenizer((String)o, " \",()*",

false);
while (tok.hasMoreTokens())

output.add(mTupleFactory.newTuple(tok.nextToken()));
return output;

} catch (ExecException ee) {
// error handling goes here

Pig UDF Manual

Page 11
Copyright © 2007 The Apache Software Foundation. All rights reserved.

}
}
public Schema outputSchema(Schema input) {

try{
Schema bagSchema = new Schema();
bagSchema.add(new Schema.FieldSchema("token",

DataType.CHARARRAY));

return new Schema(new
Schema.FieldSchema(getSchemaName(this.getClass().getName().toLowerCase(),
input),

bagSchema,
DataType.BAG));

}catch (Exception e){
return null;

}
}

}

As you can see, this is very similar to the output schema definition in the Swap function.
One difference is that instead of reusing input schema, we create a brand new field schema to
represent the tokens stored in the bag. The other difference is that the type of the schema
created is BAG (not =TUPLE=).

2.7. Error Handling

There are several types of errors that can occur in a UDF:

1. An error that affects a particular row but is not likely to impact other rows. An example
of such an error would be a malformed input value or divide by zero problem. A
reasonable handling of this situation would be to emit a warning and return a null value.
ABS function in the next section demonstrates this approach. The current approach is to
write the warning to stderr. Eventually we would like to pass a logger to the UDFs.
Note that returning a NULL value only makes sense if the malformed value is of type
bytearray. Otherwise the proper type has been already created and should have an
appropriate value. If this is not the case, it is an internal error and should cause the system
to fail. Both cases can be seen in the implementation of the ABS function in the next
section.

2. An error that affects the entire processing but can succeed on retry. An example of such a
failure is the inability to open a lookup file because the file could not be found. This
could be a temporary environmental issue that can go away on retry. A UDF can signal
this to Pig by throwing an IOException as with the case of the ABS function below.

3. An error that affects the entire processing and is not likely to succeed on retry. An
example of such a failure is the inability to open a lookup file because of file permission
problems. Pig currently does not have a way to handle this case. Hadoop does not have a
way to handle this case either. It will be handled the same way as 2 above.

Pig UDF Manual

Page 12
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig provides a helper class WrappedIOException. The intent here is to allow you to
convert any exception into IOException. Its usage can be seen in the UPPER function in
our first example.

2.8. Function Overloading

Before the type system was available in Pig, all values for the purpose of arithmetic
calculations were assumed to be doubles as the safest choice. However, this is not very
efficient if the data is actually of type integer or long. (We saw about a 2x slowdown of a
query when using double where integer could be used.) Now that Pig supports types we can
take advantage of the type information and choose the function that is most efficient for the
provided operands.

UDF writers are encouraged to provide type-specific versions of a function if this can result
in better performance. On the other hand, we don't want the users of the functions to worry
about different functions - the right thing should just happen. Pig allows for this via a
function table mechanism as shown in the next example.

This example shows the implementation of the ABS function that returns the absolute value
of a numeric value passed to it as input.

import java.io.IOException;
import java.util.List;
import java.util.ArrayList;
import org.apache.pig.EvalFunc;
import org.apache.pig.FuncSpec;
import org.apache.pig.data.Tuple;
import org.apache.pig.impl.logicalLayer.FrontendException;
import org.apache.pig.impl.util.WrappedIOException;
import org.apache.pig.impl.logicalLayer.schema.Schema;
import org.apache.pig.data.DataType;

public class ABS extends EvalFunc (Double) {
public Double exec(Tuple input) throws IOException {

if (input == null || input.size() == 0)
return null;

Double d;
try{

d = DataType.toDouble(input.get(0));
} catch (NumberFormatException nfe){

System.err.println("Failed to process input; error - " +
nfe.getMessage());

return null;
} catch (Exception e){

throw WrappedIOException.wrap("Caught exception processing
input row ", e);

}
return Math.abs(d);

Pig UDF Manual

Page 13
Copyright © 2007 The Apache Software Foundation. All rights reserved.

}
public List (FuncSpec) getArgToFuncMapping() throws FrontendException {

List (FuncSpec) funcList = new ArrayList (FuncSpec) ();
funcList.add(new FuncSpec(this.getClass().getName(), new Schema(new

Schema.FieldSchema(null, DataType.BYTEARRAY))));
funcList.add(new FuncSpec(DoubleAbs.class.getName(), new

Schema(new Schema.FieldSchema(null, DataType.DOUBLE))));
funcList.add(new FuncSpec(FloatAbs.class.getName(), new

Schema(new Schema.FieldSchema(null, DataType.FLOAT))));
funcList.add(new FuncSpec(IntAbs.class.getName(), new Schema(new

Schema.FieldSchema(null, DataType.INTEGER))));
funcList.add(new FuncSpec(LongAbs.class.getName(), new Schema(new

Schema.FieldSchema(null, DataType.LONG))));
return funcList;

}
}

The main thing to notice in this example is the getArgToFuncMapping() method. This
method returns a list that contains a mapping from the input schema to the class that should
be used to handle it. In this example the main class handles the bytearray input and
outsources the rest of the work to other classes implemented in separate files in the same
package. The example of one such class is below. This class handles integer input values.

import java.io.IOException;
import org.apache.pig.impl.util.WrappedIOException;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.Tuple;

public class IntAbs extends EvalFunc (Integer) {
public Integer exec(Tuple input) throws IOException {

if (input == null || input.size() == 0)
return null;

Integer d;
try{

d = (Integer)input.get(0);
} catch (Exception e){

throw WrappedIOException.wrap("Caught exception processing
input row ", e);

}
return Math.abs(d);

}
}

A note on error handling. The ABS class covers the case of the bytearray which means
the data has not been converted yet to its actual type. This is why a null value is returned
when NumberFormatException is encountered. However, the IntAbs function is only
called if the data is already of type Integer which means it has already been converted to
the real type and bad format has been dealt with. This is why an exception is thrown if the
input can't be cast to Integer.

The example above covers a reasonably simple case where the UDF only takes one

Pig UDF Manual

Page 14
Copyright © 2007 The Apache Software Foundation. All rights reserved.

parameter and there is a separate function for each parameter type. However, this will not
always be the case. If Pig can't find an exact match it tries to do a best match. The
rule for the best match is to find the most efficient function that can be used safely. This
means that Pig must find the function that, for each input parameter, provides the smallest
type that is equal to or greater than the input type. The type progression rules are:
int=->=long=->=float=->=double.

For instance, let's consider function MAX which is part of the piggybank described later in
this document. Given two values, the function returns the larger value. The function table for
MAX looks like this:

public List (FuncSpec) getArgToFuncMapping() throws FrontendException {
List (FuncSpec) funcList = new ArrayList (FuncSpec) ();
Util.addToFunctionList(funcList, IntMax.class.getName(),

DataType.INTEGER);
Util.addToFunctionList(funcList, DoubleMax.class.getName(),

DataType.DOUBLE);
Util.addToFunctionList(funcList, FloatMax.class.getName(),

DataType.FLOAT);
Util.addToFunctionList(funcList, LongMax.class.getName(),

DataType.LONG);

return funcList;
}

The Util.addToFunctionList function is a helper function that adds an entry to the
list as the first argument, with the key of the class name passed as the second argument, and
the schema containing two fields of the same type as the third argument.

Let's now see how this function can be used in a Pig script:

REGISTER piggybank.jar
A = LOAD 'student_data' AS (name: chararray, gpa1: float, gpa2: double);
B = FOREACH A GENERATE name,
org.apache.pig.piggybank.evaluation.math.MAX(gpa1, gpa2);
DUMP B;

In this example, the function gets one parameter of type float and another of type
double. The best fit will be the function that takes two double values. Pig makes this choice
on the user's behalf by inserting implicit casts for the parameters. Running the script above is
equivalent to running the script below:

A = LOAD 'student_data' AS (name: chararray, gpa1: float, gpa2: double);
B = FOREACH A GENERATE name,
org.apache.pig.piggybank.evaluation.math.MAX((double)gpa1, gpa2);
DUMP B;

A special case of the best fit approach is handling data without a schema specified. The

Pig UDF Manual

Page 15
Copyright © 2007 The Apache Software Foundation. All rights reserved.

type for this data is interpreted as bytearray. Since the type of the data is not known,
there is no way to choose a best fit version. The only time a cast is performed is when the
function table contains only a single entry. This works well to maintain backward
compatibility.

Let's revisit the UPPER function from our first example. As it is written now, it would only
work if the data passed to it is of type chararray. To make it work with data whose type is
not explicitly set, a function table with a single entry needs to be added:

package myudfs;
import java.io.IOException;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.Tuple;

public class UPPER extends EvalFunc (String)
{

public String exec(Tuple input) throws IOException {
if (input == null || input.size() == 0)

return null;
try{

String str = (String)input.get(0);
return str.toUpperCase();

}catch(Exception e){
System.err.println("WARN: UPPER: failed to process input; error

- " + e.getMessage());
return null;

}
}
public List (FuncSpec) getArgToFuncMapping() throws FrontendException {

List (FuncSpec) funcList = new ArrayList (FuncSpec) ();
funcList.add(new FuncSpec(this.getClass().getName(), new Schema(new

Schema.FieldSchema(null, DataType.CHARARRAY))));
return funcList;

}
}

Now the following script will ran:

-- this is myscript.pig
REGISTER myudfs.jar;
A = LOAD 'student_data' AS (name, age, gpa);
B = FOREACH A GENERATE myudfs.UPPER(name);
DUMP B;

2.9. Reporting Progress

A challenge of running a large shared system is to make sure system resources are used
efficiently. One aspect of this challenge is detecting runaway processes that are no longer
making progress. Pig uses a heartbeat mechanism for this purpose. If any of the tasks stops
sending a heartbeat, the system assumes that it is dead and kills it.

Pig UDF Manual

Page 16
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Most of the time, single-tuple processing within a UDF is very short and does not require a
UDF to heartbeat. The same is true for aggregate functions that operate on large bags because
bag iteration code takes care of it. However, if you have a function that performs a complex
computation that can take an order of minutes to execute, you should add a progress indicator
to your code. This is very easy to accomplish. The EvalFunc function provides a
progress function that you need to call in your exec method.

For instance, the UPPER function would now look as follows:

public class UPPER extends EvalFunc (String)
{

public String exec(Tuple input) throws IOException {
if (input == null || input.size() == 0)
return null;
try{

reporter.progress();
String str = (String)input.get(0);
return str.toUpperCase();

}catch(Exception e){
throw WrappedIOException.wrap("Caught exception

processing input row ", e);
}

}
}

3. Load/Store Functions

These user-defined functions control how data goes into Pig and comes out of Pig. Often, the
same function handles both input and output but that does not have to be the case.

3.1. Load Functions

Every load function needs to implement the LoadFunc interface. An abbreviated version is
shown below. The full definition can be seen here.

public interface LoadFunc {
public void bindTo(String fileName, BufferedPositionedInputStream is,

long offset, long end) throws IOException;
public Tuple getNext() throws IOException;
// conversion functions
public Integer bytesToInteger(byte[] b) throws IOException;
public Long bytesToLong(byte[] b) throws IOException;
......
public void fieldsToRead(Schema schema);
public Schema determineSchema(String fileName, ExecType execType,

DataStorage storage) throws IOException;

The bindTo function is called once by each Pig task before it starts processing data. It is

Pig UDF Manual

Page 17
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/LoadFunc.java?view=markup

intended to connect the function to its input. It provides the following information:

• fileName - The name of the file from which the data is read. Not used most of the time

• is - The input stream from which the data is read. It is already positioned at the place
where the function needs to start reading

• offset - The offset into the stream from which to read. It is equivalent to
is.getPosition() and not strictly needed

• end - The position of the last byte that should be read by the function.

In the Hadoop world, the input data is treated as a continuous stream of bytes. A slicer,
discussed in the Advanced Topics section, is used to split the data into chunks with each
chunk going to a particular task for processing. This chunk is what bindTo provides to the
UDF. Note that unless you use a custom slicer, the default slicer is not aware of tuple
boundaries. This means that the chunk you get can start and end in the middle of a particular
tuple. One common approach is to skip the first partial tuple and continue past the end
position to finish processing a tuple. This is what PigStorage does as the example later in
this section shows.

The getNext function reads the input stream and constructs the next tuple. It returns null
when it is done with processing and throws an IOException if it fails to process an input
tuple.

Next is a bunch of conversion routines that convert data from bytearray to the requested
type. This requires further explanation. By default, we would like the loader to do as little
per-tuple processing as possible. This is because many tuples can be thrown out during
filtering or joins. Also, many fields might not get used because they get projected out. If the
data needs to be converted into another form, we would like this conversion to happen as late
as possible. The majority of the loaders should return the data as bytearrays and the Pig will
request a conversion from bytearray to the actual type when needed. Let's looks at the
example below:

A = load 'student_data' using PigStorage() as (name: chararray, age: int,
gpa: float);
B = filter A by age >25;
C = foreach B generate name;
dump C;

In this query, only age needs to be converted to its actual type (=int=) right away. name
only needs to be converted in the next step of processing where the data is likely to be much
smaller. gpa is not used at all and will never need to be converted.

This is the main reason for Pig to separate the reading of the data (which can happen
immediately) from the converting of the data (to the right type, which can happen later). For

Pig UDF Manual

Page 18
Copyright © 2007 The Apache Software Foundation. All rights reserved.

ASCII data, Pig provides Utf8StorageConverter that your loader class can extend and
will take care of all the conversion routines. The code for it can be found here.

Note that conversion rutines should return null values for data that can't be converted to the
specified type.

Loaders that work with binary data like BinStorage are not going to use this model.
Instead, they will produce objects of the appropriate types. However, they might still need to
define conversion routines in case some of the fields in a tuple are of type bytearray.

fieldsToRead is reserved for future use and should be left empty.

The determineSchema function must be implemented by loaders that return real data
types rather than bytearray fields. Other loaders should just return null. The idea here is
that Pig needs to know the actual types it will be getting; Pig will call determineSchema
on the client side to get this information. The function is provided as a way to sample the
data to determine its schema.

Here is the example of the function implemented by =BinStorage=:

public Schema determineSchema(String fileName, ExecType execType,
DataStorage storage) throws IOException {

InputStream is = FileLocalizer.open(fileName, execType, storage);
bindTo(fileName, new BufferedPositionedInputStream(is), 0,

Long.MAX_VALUE);
// get the first record from the input file and figure out the

schema
Tuple t = getNext();
if(t == null) return null;
int numFields = t.size();
Schema s = new Schema();
for (int i = 0; i numFields; i++) {

try {
s.add(DataType.determineFieldSchema(t.get(i)));

} catch (Exception e) {
throw WrappedIOException.wrap(e);

}
}
return s;

}

Note that this approach assumes that the data has a uniform schema. The function needs to
make sure that the data it produces conforms to the schema returned by
determineSchema, otherwise the processing will fail. This means producing the right
number of fields in the tuple (dropping fields or emitting null values if needed) and
producing fields of the right type (again emitting null values as needed).

For complete examples, see BinStorage and PigStorage.

Pig UDF Manual

Page 19
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/builtin/Utf8StorageConverter.java?view=markup
http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/builtin/BinStorage.java?view=markup
http://svn.apache.org/viewvc/hadoop/pig/trunk/src/org/apache/pig/builtin/PigStorage.java?view=markup

3.2. Store Functions

All store functions need to implement the StoreFunc interface:

public interface StoreFunc {
public abstract void bindTo(OutputStream os) throws IOException;
public abstract void putNext(Tuple f) throws IOException;
public abstract void finish() throws IOException;

}

The bindTo method is called in the beginning of the processing to connect the store
function to the output stream it will write to. The putNext method is called for every tuple
to be stored and is responsible for writing the tuple into the output. The finish function is
called at the end of the processing to do all needed cleanup like flushing the output stream.

Here is an example of a simple store function that writes data as a string returned from the
toString function.

public class StringStore implements StoreFunc {
OutputStream os;
private byte recordDel = (byte)'\n';
public void bindTo(OutputStream os) throws IOException
{

this.os = os;
}
public void putNext(Tuple t) throws IOException
{

os.write((t.toString() + (char)this.recordDel).getBytes("utf8"));
}
public void finish() throws IOException
{

os.flush();
}

}

4. Comparison Functions

Comparison UDFs are mostly obsolete now. They were added to the language because, at
that time, the ORDER operator had two significant shortcomings. First, it did not allow
descending order and, second, it only supported alphanumeric order.

The latest version of Pig solves both of these issues. The pointer to the original
documentation is provided here for completeness.

5. Builtin Functions and Function Repositories

Pig comes with a set of builtin in functions. (NEED LINK) Two main properties differentiate

Pig UDF Manual

Page 20
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://wiki.apache.org/pig/UserDefinedOrdering

builtin functions from UDFs. First, they don't need to be registered because Pig knows where
they are. Second, they don't need to be qualified when used because Pig knows where to find
them.

In addition to builtins, Pig hosts a UDF repository called piggybank that allows users to
share UDFs that they have written. The details are described in PiggyBank.

6. Advanced Topics

6.1. Function Instantiation

One problem that users run into is when they make assumption about how many times a
constructor for their UDF is called. For instance, they might be creating side files in the store
function and doing it in the constructor seems like a good idea. The problem with this
approach is that in most cases Pig instantiates functions on the client side to, for instance,
examine the schema of the data.

Users should not make assumptions about how many times a function is instantiated; instead,
they should make their code resilient to multiple instantiations. For instance, they could
check if the files exist before creating them.

6.2. Schemas

One request from users is to have the ability to examine the input schema of the data before
processing the data. For example, they would like to know how to convert an input tuple to a
map such that the keys in the map are the names of the input columns. The current answer is
that there is now way to do this. This is something we would like to support in the future.

6.3. Custom Slicer

Sometimes a LoadFunc needs more control over how input is chopped up or even found.

Here are some scenarios that call for a custom slicer:

• Input needs to be chopped up differently than on block boundaries. (Perhaps you want
every 1M instead of every 128M. Or, you may want to process in big 1G chunks.)

• Input comes from a source outside of HDFS. (Perhaps you are reading from a database.)

• There are locality preferences for processing the data that is more than simple HDFS
locality.

• Extra information needs to be passed from the client machine to the LoadFunc
instances running remotely.

Pig UDF Manual

Page 21
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://wiki.apache.org/pig/PiggyBank

All of these scenarios are addressed by slicers. There are two parts to the slicing framework:
Slicer, the class that creates slices, and Slice, the class that represents a particular piece
of the input. Slicing kicks in when Pig sees that the LoadFunc implements the Slicer
interface.

6.3.1. Slicer

The slicer has two basic functions: validate input and slice up the input. Both of these
methods will be called on the client machine.

public interface Slicer {
void validate(DataStorage store, String location) throws IOException;
Slice[] slice(DataStorage store, String location) throws IOException;

}

6.3.2. Slice

Each slice describes a unit of work and will correspond to a map task in Hadoop.

public interface Slice extends Serializable {
String[] getLocations();
void init(DataStorage store) throws IOException;
long getStart();
long getLength();
void close() throws IOException;
long getPos() throws IOException;
float getProgress() throws IOException;
boolean next(Tuple value) throws IOException;

}

Only one of the methods is used for scheduling: getLocations(). This method allows
the implementor to give hints to Pig about where the task should be run. It is only a hint. If
things are busy, the task may get scheduled elsewhere.

The rest of the Slice methods are used to read records on the processing nodes. init is
called right after the Slice object is deserialized and close is called after the last record
has been read. The Pig runtime will read records from the Slice until getPos() exceeds
getLength(). Because Slice implements serializable, Slicer can encode information
in the Slice that will later be available when the task is run.

6.3.3. Example

This example shows a simple Slicer that gets a count from the input stream and generates
that number of Slice s.

Pig UDF Manual

Page 22
Copyright © 2007 The Apache Software Foundation. All rights reserved.

public class RangeSlicer implements Slicer, LoadFunc {
/**
* Expects location to be a Stringified integer, and makes
* Integer.parseInt(location) slices. Each slice generates a single

value,
* its index in the sequence of slices.
*/
public Slice[] slice (DataStorage store, String location) throws

IOException {
// Note: validate has already made sure that location is an integer
int numslices = Integer.parseInt(location);
Slice[] slices = new Slice[numslices];
for (int i = 0; i slices.length; i++) {

slices[i] = new SingleValueSlice(i);
}
return slices;

}
public void validate(DataStorage store, String location) throws

IOException {
try {

Integer.parseInt(location);
} catch (NumberFormatException nfe) {

throw new IOException(nfe.getMessage());
}

}
/**
* A Slice that returns a single value from next.
*/
public static class SingleValueSlice implements Slice {

// note this value is set by the Slicer and will get serialized and
deserialized at the remote processing node

public int val;
// since we just have a single value, we can use a boolean rather

than a counter
private transient boolean read;
public SingleValueSlice (int value) {

this.val = value;
}
public void close () throws IOException {}
public long getLength () { return 1; }
public String[] getLocations () { return new String[0]; }
public long getStart() { return 0; }
public long getPos () throws IOException { return read ? 1 : 0; }
public float getProgress () throws IOException { return read ? 1 :

0; }
public void init (DataStorage store) throws IOException {}
public boolean next (Tuple value) throws IOException {

if (!read) {
value.appendField(new DataAtom(val));
read = true;
return true;

}
return false;

}

Pig UDF Manual

Page 23
Copyright © 2007 The Apache Software Foundation. All rights reserved.

private static final long serialVersionUID = 1L;
}

}

You can invoke the RangeSlicer class with the following Pig Latin statement:

LOAD '27' USING RangeSlicer();

Pig UDF Manual

Page 24
Copyright © 2007 The Apache Software Foundation. All rights reserved.

	1 Overview
	2 Eval Functions
	2.1 How to Use a Simple Eval Function
	2.2 How to Write a Simple Eval Function
	2.3 Aggregate Functions
	2.4 Filter Functions
	2.5 Pig Types
	2.6 Schema
	2.7 Error Handling
	2.8 Function Overloading
	2.9 Reporting Progress

	3 Load/Store Functions
	3.1 Load Functions
	3.2 Store Functions

	4 Comparison Functions
	5 Builtin Functions and Function Repositories
	6 Advanced Topics
	6.1 Function Instantiation
	6.2 Schemas
	6.3 Custom Slicer
	6.3.1 Slicer
	6.3.2 Slice
	6.3.3 Example

