
Pig Cookbook

Table of contents

1 Overview..2

2 Performance Enhancers..2

Copyright © 2007 The Apache Software Foundation. All rights reserved.

1. Overview

This document provides hints and tips for pig users.

2. Performance Enhancers

2.1. Use Optimization

Pig supports various optimization rules which are turned on by default. Become familiar with
these rules.

2.2. Use Types

If types are not specified in the load statement, Pig assumes the type of =double= for numeric
computations. A lot of the time, your data would be much smaller, maybe, integer or long.
Specifying the real type will help with speed of arithmetic computation. It has an additional
advantage of early error detection.

--Query 1
A = load 'myfile' as (t, u, v);
B = foreach A generate t + u;

--Query 2
A = load 'myfile' as (t: int, u: int, v);
B = foreach A generate t + u;

The second query will run more efficiently than the first. In some of our queries with see 2x
speedup.

2.3. Project Early and Often

Pig does not (yet) determine when a field is no longer needed and drop the field from the
row. For example, say you have a query like:

A = load 'myfile' as (t, u, v);
B = load 'myotherfile' as (x, y, z);
C = join A by t, B by x;
D = group C by u;
E = foreach D generate group, COUNT($1);

There is no need for v, y, or z to participate in this query. And there is no need to carry both t
and x past the join, just one will suffice. Changing the query above to the query below will
greatly reduce the amount of data being carried through the map and reduce phases by pig.

Pig Cookbook

Page 2
Copyright © 2007 The Apache Software Foundation. All rights reserved.

piglatin_ref1.html#Optimization+Rules

A = load 'myfile' as (t, u, v);
A1 = foreach A generate t, u;
B = load 'myotherfile' as (x, y, z);
B1 = foreach B generate x;
C = join A1 by t, B1 by x;
C1 = foreach C generate t, u;
D = group C1 by u;
E = foreach D generate group, COUNT($1);

Depending on your data, this can produce significant time savings. In queries similar to the
example shown here we have seen total time drop by 50%.

2.4. Filter Early and Often

As with early projection, in most cases it is beneficial to apply filters as early as possible to
reduce the amount of data flowing through the pipeline.

-- Query 1
A = load 'myfile' as (t, u, v);
B = load 'myotherfile' as (x, y, z);
C = filter A by t == 1;
D = join C by t, B by x;
E = group D by u;
F = foreach E generate group, COUNT($1);

-- Query 2
A = load 'myfile' as (t, u, v);
B = load 'myotherfile' as (x, y, z);
C = join A by t, B by x;
D = group C by u;
E = foreach D generate group, COUNT($1);
F = filter E by C.t == 1;

The first query is clearly more efficient than the second one because it reduces the amount of
data going into the join.

One case where pushing filters up might not be a good idea is if the cost of applying filter is
very high and only a small amount of data is filtered out.

2.5. Reduce Your Operator Pipeline

For clarity of your script, you might choose to split your projects into several steps for
instance:

A = load 'data' as (in: map[]);
-- get key out of the map
B = foreach A generate in#k1 as k1, in#k2 as k2;
-- concatenate the keys
C = foreach B generate CONCAT(k1, k2);
.......

Pig Cookbook

Page 3
Copyright © 2007 The Apache Software Foundation. All rights reserved.

While the example above is easier to read, you might want to consider combining the two
foreach statements to improve your query performance:

A = load 'data' as (in: map[]);
-- concatenate the keys from the map
B = foreach A generate CONCAT(in#k1, in#k2);
....

The same goes for filters.

2.6. Make Your UDFs Algebraic

Queries that can take advantage of the combiner generally ran much faster (sometimes
several times faster) than the versions that don't. The latest code significantly improves
combiner usage; however, you need to make sure you do your part. If you have a UDF that
works on grouped data and is, by nature, algebraic (meaning their computation can be
decomposed into multiple steps) make sure you implement it as such. For details on how to
write algebraic UDFs, see the Pig UDF Manual and Aggregate Functions.

A = load 'data' as (x, y, z)
B = group A by x;
C = foreach B generate group, MyUDF(A);
....

If MyUDF is algebraic, the query will use combiner and run much faster. You can run
explain command on your query to make sure that combiner is used.

2.7. Implement the Aggregator Interface

If your UDF can't be made Algebraic but is able to deal with getting input in chunks rather
than all at once, consider implementing the Aggregator interface to reduce the amount of
memory used by your script.If your function is Algebraic and can be used on conjunction
with Accumulator functions, you will need to implement the Accumulator interface as well
as the Algebraic interface. For more information, see the Pig UDF Manual and Accumulator
Interface.

2.8. Drop Nulls Before a Join

With the introduction of nulls, join and cogroup semantics were altered to work with nulls.
The semantic for cogrouping with nulls is that nulls from a given input are grouped together,
but nulls across inputs are not grouped together. This preserves the semantics of grouping
(nulls are collected together from a single input to be passed to aggregate functions like
COUNT) and the semantics of join (nulls are not joined across inputs). Since flattening an
empty bag results in an empty row (and no output), in a standard join the rows with a null

Pig Cookbook

Page 4
Copyright © 2007 The Apache Software Foundation. All rights reserved.

udf.html#Aggregate+Functions
udf.html#Accumulator+Interface
udf.html#Accumulator+Interface

key will always be dropped.

This join

A = load 'myfile' as (t, u, v);
B = load 'myotherfile' as (x, y, z);
C = join A by t, B by x;

is rewritten by Pig to

A = load 'myfile' as (t, u, v);
B = load 'myotherfile' as (x, y, z);
C1 = cogroup A by t INNER, B by x INNER;
C = foreach C1 generate flatten(A), flatten(B);

Since the nulls from A and B won't be collected together, when the nulls are flattened we're
guaranteed to have an empty bag, which will result in no output. So the null keys will be
dropped. But they will not be dropped until the last possible moment.

If the query is rewritten to

A = load 'myfile' as (t, u, v);
B = load 'myotherfile' as (x, y, z);
A1 = filter A by t is not null;
B1 = filter B by x is not null;
C = join A1 by t, B1 by x;

then the nulls will be dropped before the join. Since all null keys go to a single reducer, if
your key is null even a small percentage of the time the gain can be significant. In one test
where the key was null 7% of the time and the data was spread across 200 reducers, we saw a
about a 10x speed up in the query by adding the early filters.

2.9. Take Advantage of Join Optimizations

Regular Join Optimizations

Optimization for regular joins ensures that the last table in the join is not brought into
memory but streamed through instead. Optimization reduces the amount of memory used
which means you can avoid spilling the data and also should be able to scale your query to
larger data volumes.

To take advantage of this optimization, make sure that the table with the largest number of
tuples per key is the last table in your query. In some of our tests we saw 10x performance
improvement as the result of this optimization.

small = load 'small_file' as (t, u, v);
large = load 'large_file' as (x, y, z);

Pig Cookbook

Page 5
Copyright © 2007 The Apache Software Foundation. All rights reserved.

C = join small by t, large by x;

Specialized Join Optimizations

Optimization can also be achieved using fragment replicate joins, skewed joins, and merge
joins. For more information see Specialized Joins.

2.10. Use the Parallel Features

You can set the number of reduce tasks for the MapReduce jobs generated by Pig using two
parallel features. (The parallel features only affect the number of reduce tasks. Map
parallelism is determined by the input file, one map for each HDFS block.)

You Set the Number of Reducers

Use the set default parallel command to set the number of reducers at the script level.

Alternatively, use the PARALLEL clause to set the number of reducers at the operator level.
(In a script, the value set via the PARALLEL clause will override any value set via "set
default parallel.") You can include the PARALLEL clause with any operator that starts a
reduce phase: COGROUP, CROSS, DISTINCT, GROUP, JOIN (inner), JOIN (outer), and
ORDER BY.

The number of reducers you need for a particular construct in Pig that forms a MapReduce
boundary depends entirely on (1) your data and the number of intermediate keys you are
generating in your mappers and (2) the partitioner and distribution of map (combiner) output
keys. In the best cases we have seen that a reducer processing about 1 GB of data behaves
efficiently.

Let Pig Set the Number of Reducers

If neither "set default parallel" nor the PARALLEL clause are used, Pig sets the number of
reducers using a heuristic based on the size of the input data. You can set the values for these
properties:

• pig.exec.reducers.bytes.per.reducer - Defines the number of input bytes per reduce;
default value is 1000*1000*1000 (1GB).

• pig.exec.reducers.max - Defines the upper bound on the number of reducers; default is
999.

The formula, shown below, is very simple and will improve over time. The computed value
takes all inputs within the script into account and applies the computed value to all the jobs
within Pig script.

#reducers = MIN (pig.exec.reducers.max, total input size (in

Pig Cookbook

Page 6
Copyright © 2007 The Apache Software Foundation. All rights reserved.

piglatin_ref1.html#Specialized+Joins
piglatin_ref2.html#set
piglatin_ref2.html#COGROUP
piglatin_ref2.html#CROSS
piglatin_ref2.html#DISTINCT
piglatin_ref2.html#GROUP
piglatin_ref2.html#JOIN+%28inner%29
piglatin_ref2.html#JOIN+%28outer%29
piglatin_ref2.html#ORDER+BY

bytes) / bytes per reducer)

Examples

In this example PARALLEL is used with the GROUP operator.

A = LOAD 'myfile' AS (t, u, v);
B = GROUP A BY t PARALLEL 18;
...

In this example all the MapReduce jobs that get launched use 20 reducers.

SET default_parallel 20;
A = LOAD ‘myfile.txt’ USING PigStorage() AS (t, u, v);
B = GROUP A BY t;
C = FOREACH B GENERATE group, COUNT(A.t) as mycount;
D = ORDER C BY mycount;
STORE D INTO ‘mysortedcount’ USING PigStorage();

2.11. Use the LIMIT Operator

Often you are not interested in the entire output but rather a sample or top results. In such
cases, using LIMIT can yield a much better performance as we push the limit as high as
possible to minimize the amount of data travelling through the pipeline.

Sample:

A = load 'myfile' as (t, u, v);
B = limit A 500;

Top results:

A = load 'myfile' as (t, u, v);
B = order A by t;
C = limit B 500;

2.12. Prefer DISTINCT over GROUP BY/GENERATE

To extract unique values from a column in a relation you can use DISTINCT or GROUP
BY/GENERATE. DISTINCT is the preferred method; it is faster and more efficient.

Example using GROUP BY - GENERATE:

A = load 'myfile' as (t, u, v);
B = foreach A generate u;
C = group B by u;
D = foreach C generate group as uniquekey;
dump D;

Pig Cookbook

Page 7
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Example using DISTINCT:

A = load 'myfile' as (t, u, v);
B = foreach A generate u;
C = distinct B;
dump C;

2.13. Compress the Results of Intermediate Jobs

If your Pig script generates a sequence of MapReduce jobs, you can compress the output of
the intermediate jobs using LZO compression. (Use the EXPLAIN operator to determine if
your script produces multiple MapReduce Jobs.)

By doing this, you will save HDFS space used to store the intermediate data used by PIG and
potentially improve query execution speed. In general, the more intermediate data that is
generated, the more benefits in storage and speed that result.

You can set the value for these properties:

• pig.tmpfilecompression - Determines if the temporary files should be compressed or not
(set to false by default).

• pig.tmpfilecompression.codec - Specifies which compression codec to use. Currently, Pig
accepts "gz" and "lzo" as possible values. However, because LZO is under GPL license
(and disabled by default) you will need to configure your cluster to use the LZO codec to
take advantage of this feature. For details, see
http://code.google.com/p/hadoop-gpl-compression/wiki/FAQ.

On the non-trivial queries (one ran longer than a couple of minutes) we saw significant
improvements both in terms of query latency and space usage. For some queries we saw up
to 96% disk saving and up to 4x query speed up. Of course, the performance characteristics
are very much query and data dependent and testing needs to be done to determine gains. We
did not see any slowdown in the tests we peformed which means that you are at least saving
on space while using compression.

With gzip we saw a better compression (96-99%) but at a cost of 4% slowdown. Thus, we
don't recommend using gzip.

Example

-- launch Pig script using lzo compression

java -cp $PIG_HOME/pig.jar
-Djava.library.path=<path to the lzo library>
-Dpig.tmpfilecompression=true
-Dpig.tmpfilecompression.codec=lzo org.apache.pig.Main myscript.pig

Pig Cookbook

Page 8
Copyright © 2007 The Apache Software Foundation. All rights reserved.

piglatin_ref2.html#EXPLAIN

2.14. Combine Small Input Files

Processing input (either user input or intermediate input) from multiple small files can be
inefficient because a separate map has to be created for each file. Pig can now combined
small files so that they are processed as a single map.

You can set the values for these properties:

• pig.maxCombinedSplitSize – Specifies the size, in bytes, of data to be processed by a
single map. Smaller files are combined untill this size is reached.

• pig.splitCombination – Turns combine split files on or off (set to “true” by default).

This feature works with PigStorage. However, if you are using a custom loader, please note
the following:

• If your loader implementation makes use of the PigSplit object passed through the
prepareToRead method, then you may need to rebuild the loader since the definition of
PigSplit has been modified.

• The loader must be stateless across the invocations to the prepareToRead method. That
is, the method should reset any internal states that are not affected by the RecordReader
argument.

• If a loader implements IndexableLoadFunc, or implements OrderedLoadFunc and
CollectableLoadFunc, its input splits won't be subject to possible combinations.

Pig Cookbook

Page 9
Copyright © 2007 The Apache Software Foundation. All rights reserved.

piglatin_ref2.html#PigStorage

	1 Overview
	2 Performance Enhancers
	2.1 Use Optimization
	2.2 Use Types
	2.3 Project Early and Often
	2.4 Filter Early and Often
	2.5 Reduce Your Operator Pipeline
	2.6 Make Your UDFs Algebraic
	2.7 Implement the Aggregator Interface
	2.8 Drop Nulls Before a Join
	2.9 Take Advantage of Join Optimizations
	2.10 Use the Parallel Features
	2.11 Use the LIMIT Operator
	2.12 Prefer DISTINCT over GROUP BY/GENERATE
	2.13 Compress the Results of Intermediate Jobs
	2.14 Combine Small Input Files

